Cho A = 4 + 42 + 43+ ... + 424
a) Chứng tỏ rằng A chia hết cho 21
b ) Tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài sau nhé:
https://hoidap247.com/cau-hoi/2044248
b) Đặt \(B=1\cdot4\cdot7\cdot10\cdot...\cdot58\)
Vì trong dãy số B, quy luật sẽ là kể từ số thứ 2 thì số sau bằng số trước thêm 3 đơn vị nên \(B=1\cdot4\cdot7\cdot10\cdot13\cdot...\cdot58\)
\(\Leftrightarrow B⋮13\cdot58\)
\(\Leftrightarrow B⋮13\cdot29\)
hay \(B⋮377\)
Đặt \(C=3\cdot12\cdot21\cdot30\cdot...\cdot174\)
Vì trong dãy số C có quy luật là các số chia 9 dư 3 nên \(C=3\cdot12\cdot21\cdot30\cdot39\cdot...\cdot174\)
\(\Leftrightarrow C=3\cdot12\cdot21\cdot30\cdot3\cdot13\cdot...\cdot29\cdot6\)
\(\Leftrightarrow C⋮13\cdot29\)
\(\Leftrightarrow C⋮377\)
Ta có: \(A=1\cdot4\cdot7\cdot10\cdot...\cdot58+3\cdot12\cdot21\cdot30\cdot...\cdot174\)
\(\Leftrightarrow A=B+C\)
mà \(B⋮377\)(cmt)
và \(C⋮377\)(cmt)
nên \(A⋮377\)(đpcm)
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
2. b)
Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a
Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a
Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)
315= 32.5.7
540= 22..33.5
ƯCLN(315;540) =5.32= 45
Vậy...
Ko chắc
2
a) ta có : aaa . bbb
=a . 111 . b . 111
=a . 37.3 .b .111
=> a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37
mình nghĩ thế , ko chắc đúng đâu nhé
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
a) Ta có: \(A=4+4^2+4^3+....+4^{24}\)
\(\Rightarrow A=\left(4+4^2+4^3\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(\Rightarrow A=4.\left(1+4+4^2\right)+....+4^{22}.\left(1+4+4^2\right)\)
\(\Rightarrow A=21.\left(4+....+4^{22}\right)⋮21\)
Vậy \(A⋮21\)
b) Tự làm