K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020
Ta có: HI/CH=1/2 HK / CH = EK / 2 EH = EK/DE tam giác HIC đồng dạng tam giác EKD vì HI/CH=EK/DE và góc CHI = góc DEK ( cùng phụ góc HCK) suy ra góc HCI = góc EDK ta có: góc KDC + góc DCI = góc KDC + ( Góc HCI + góc HCD) =(góc KDC + góc EDK) + góc HCD = góc HDC + góc HCD = 90 độ suy ra DK vuông góc CI
25 tháng 12 2021

a: \(BC=AC:\sin B=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)

nên ΔDBC cân tại D