K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

30 tháng 3 2020

a) Ta có : \(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

...

b) Ta có : \(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm12;\pm28\right\}\)

Mà \(2x+1\)là số chẵn

\(\Rightarrow2x+1\in\left\{\pm1;\pm7\right\}\)

...

c) Ta có : \(x+15\)là bội của \(x+3\)

\(\Rightarrow x+15⋮x+3\)

\(\Rightarrow x+3+12⋮x+3\)

Vì \(x+3⋮x+3\)

\(\Rightarrow12⋮x+3\)

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

...

30 tháng 3 2020

Sửa lại phần b, dòng 2 :

Mà \(2x+1\)là số lẻ

...

\(a,12⋮x-1\)

\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Tự lập bảng nha 

\(b,28⋮2x+1\)

\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

Ta có bảng 

2x+11-12-27-714-14
2x0-21-36-813-15
x0-11/2-3/23-413/2-15/2

\(c,x+15⋮x+3\)

\(x+3+12⋮x+3\)

\(12⋮x+3\)

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Tự lập bảng 

\(d,\left(x+1\right)\left(y-1\right)=3\)

\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta lập bảng

x+11-13-3
y-13-31-1
x0-22-4
y4-220
11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

31 tháng 12 2017

nhanh tay len

16 tháng 7 2016

Ta có : \(\frac{a+3}{a-1}\)=\(\frac{\left(a-1\right)+4}{a-1}\)=1+\(\frac{4}{a-1}\)

Vì \(\frac{a+3}{a-1}\)thuộc N, nên 1+\(\frac{4}{a-1}\)thuộc N, mà 1 thuộc N

==> \(\frac{4}{a-1}\)thuộc N  ==>  (a-1) thuộc Ước của 4 ={1;2;4}hoặc {+1;-1;+2;-2;+4;-4} nếu bạn đã học số âm

==>   a thuộc {2;3;5}

16 tháng 7 2016

                 Ta có :

                \(\frac{a+3}{a-1}=\frac{a-1+1+3}{a-1}=\frac{a-1+4}{a-1}\)\(=1+\frac{4}{a-1}\)

              Để \(\frac{a+3}{a-1}\)có kết quả là 1 số tự nhiên thì a + 3 chia hết cho a - 1

              => 4 chia hết cho a - 1 hay \(a-1\inƯ\left(4\right)\)

              \(\Rightarrow a-1\in\left\{-4;-2;-1;1;2;4\right\}\)

               Vì a là 1 số tự nhiên nên \(a\in\left\{0;2;3;5\right\}\)

                Ủng hộ mk nha !!! ^_^

5 tháng 4 2020

a) Vì (x-5) là ước của 6 , mà:

Ư(6)={1;-1;2;-2;3;-3;6;-6}.

Ta có bảng sau:

x-51-12-23-36-6
x6-67-78-811-11

Vậy: x thuộc {6;-6;7;-7;8;-8;11;-11}.

5 tháng 4 2020

b) Vì (x-1) là ước của 15, mà:

Ư(15)={1;-1;3;-3;5;-5;15;-15}.

Ta có bảng sau:

x-11-13-35-515-15
x2-24-46-616-16

Vậy: x thuộc {2;-2;4;-4;6;-6;16;-16}.

4 tháng 4 2015

1.Mính ko bik

2.ko biik

3.20

 

12 tháng 12 2016

cau 3 =2

100%