1.Cho A=5^2014-5^2013+...-5^3+5^2-5+1
Tìm STN n biết 6A-1=5^n
2.CMR với mọi STN n thì biểu thức
A=(n+1)(n+6)+20 ko chia hết cho 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
giả sử n^2+n+6 chia hết cho5 thì ta có:
n(n+1)+2 chia hết cho 5
Má n(n+1)suy ra n(n+1)+2 chẵn
Suy ra n(n+1)+2có tận cùng là 0
Suy ra n(n+1) có tận cùng là 8
Má n(n+1)lá tích 2 số liên tiếp nên k tìm được n
Giả thuyết trên k hợp lý
Vậy...................
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8k(k+1)(k+2)(k+3)(k+4)(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số k(k+1)(k+2)(k+3)(k+4) (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếpk(k+1)(k+2)(k+3)(k+4) (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1k(k+1)(k+2)(k+3)(k+4)=120
Vậy tích của 5 số tự nhiên liên tiếp
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
1)Ta co A=52014-52013+...-5+1
=>5A=52015-52014+...+5
=>6A=52015+1
=>6A-1=52015
=>5n=52015
=>n=2015