Tìm số nguyên n biết: 2-3n chia hết cho 5n+1?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
a, A = 3n-1 = 3n-6+5 = 3(n-2)+5
Ta có 3(n-2) chia hết cho (n-2) => để A chia hết cho n-2 => 5 chia hết cho (n-2)
=> (n-2) thuộc ước 5 { 5,-5,1,-1}
Với n-2 = 5 => n=7
n-2= -5 => n= -3
n-2= 1 => n= 3
n-2= -1 => n= 1
C =3n+2 = 3n-6+8 = 3(n-2)+8
3(n-2) chia hết cho n-2 => Để C chia hết cho n-2 => (n-2) thuộc ước của 8 ={ 1,-1,2,-2,4,-4,8,-8}
Tưong tự như A trên các nghiệm n lần lượt là :
{3,1,4,0,6,-2,10,-6}
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
a/ n2+5n+5=n2+2n+3n+6-1 = n(n+2)+3(n+2)-1 = (n+2)(n+3)-1
Nhận thấy, (n+2)(n+3) chia hết cho n+2 với mọi n
=> để n2+5n+5 chia hết cho n+2 thì 1 phải chia hết cho n+2
=> n+2=(-1, 1) => n=(-3, -1)
b/ Ta có: n+1 chia hết cho 3n-1
<=> 3(n+1) chia hết cho 3n-1
<=> 3n+3 chia hết cho 3n-1
<=> (3n-1)+4 chia hết cho 3n-1
<=> 4 chia hết cho 3n-1 => 3n-1=(-2,-1,1,2) => n=(-1/3 ; 0; 2/3; 1)
Do n nguyên => Chọn được n=0 và n=1
a) Vì 1-2n là Ư(3n+2)
\(\Rightarrow\)3n+2 \(⋮\) 1-2n
\(\Rightarrow\)-3n-2 \(⋮\) 2n-1
\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1
\(\Rightarrow\)6n+4 \(⋮\)2n-1
\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1
\(\Rightarrow\)7 \(⋮\) 2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(7)
Ta có:
Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
2n-1 | -1 | 1 | -7 | 7 |
n | 0 | 1 | -3 | 4 |
Vậy n \(\in\){0;1;-3;4}
b) 5n+1 \(⋮\)2n-3
\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3
\(\Leftrightarrow\)10n+2 \(⋮\)2n-3
\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3
\(\Leftrightarrow\)17 \(⋮\)2n-3
\(\Rightarrow\)2n-3 \(\in\)Ư(17)
Ta có:
Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}
Lập bảng:
2n-3 | -1 | 1 | -17 | 17 |
n | 1 | 2 | -7 | 10 |
Vậy n \(\in\){1;2;-7;10}