Rút gọn phân thức: \(\frac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(P=\dfrac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}\)
\(=\dfrac{x^8\left(x^2-1\right)+x^4\left(x^2-1\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^8+x^4+1}{x^2+1}\)
b)
\(Q=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{45}+x^{35}+...+x^5\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^5\left(x^{40}+x^{30}+...+1\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{40}+x^{30}+...+1\right)\left(x^5+1\right)}\)
\(=\dfrac{1}{\left(x^5+1\right)}\)
cái câu b dòng cuối mẫu số đóng mở ngoặc chi cho mệt ei =.=
\(\left(27.700-45.20\right)\div\left(45-40+35-30+25-20+15-10+5\right)\)
\(=\)\(\left(27.100-45.20\right)\div25\)
\(=\)\(\left(27.35.20-45.20\right)\div25\)
\(=\)\(\left[\left(27.35-45\right).20\right]\div25\)
\(=\)\(18000\div25\)
\(=\)\(750\)
Đặt biểu thức là A, ta có:
\(A=\frac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5=\frac{x^{45}+x^{35}+x^{25}+x^{15}+x^5}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+A=\frac{x^{45}+x^{40}+x^{35}+x^{25}+x^{15}+x^5+x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+1=1\)
\(\Rightarrow A=\frac{1}{x^5+1}\)