cho 2 số thực không âm x và y thỏa mãn:
\(-x-\sqrt{xy}+4y-4\sqrt{y}+16=0\)
tìm giá trị nhỏ nhất của P=\(2x-3\sqrt{xy}+y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)
gọi T là tập hợp giá trị của F
\(\begin{cases}\sqrt[3]{x}\left(\sqrt[3]{x}-1\right)+\sqrt[3]{y}\left(\sqrt[3]{y}-1\right)=\sqrt[3]{xy}\\\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{xy}=m\end{cases}\)
Đặt S = \(\sqrt[3]{x}+\sqrt[3]{y},P=\sqrt[3]{xy}\) điều kiện \(S^2\ge4P\)hệ 1 trở thành
\(\begin{cases}S^2-S-3P=0\\S+P=m\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}S^2+2S-3m=0\\P=m-s\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}m=\frac{S^2+2S}{3}\\P=\frac{S^2-S}{3}\end{cases}\)
Ta có \(S^2\ge4P\Leftrightarrow S^2\ge\frac{4S^2-4S}{3}\Leftrightarrow s^2-4S\le0\Leftrightarrow0\le S\le4\)
từ đó , hệ 1 có nghiệm \(\Leftrightarrow\)hệ 2 có nghiệm (S;P) thỏa mãn \(S^2\ge4P\Leftrightarrow\)phương trình \(S^2+2S-3m=0\)có nghiệm S thỏa mãn điều kiện 0\(0\le S\le4\)tức là
\(\Delta'=1+3m\ge0\)và \(\left[\begin{array}{nghiempt}0\le-1-\sqrt{1+3m}\le4\\0\le-1+\sqrt{1+3m}\le4\end{array}\right.\)\(\Leftrightarrow\)\(\begin{cases}m\ge-\frac{1}{3}\\1\le\sqrt{1+3m}\le5\end{cases}\)\(\Leftrightarrow\)\(0\le m\le8\)
vậy max F=8, min=0
\(P=2x-3\sqrt{xy}+y=2x-3\sqrt{xy}+y+\left(-x-\sqrt{xy}+4y-4\sqrt{y}+16\right)\)
\(=x-4\sqrt{xy}+5y-4\sqrt{y}+16\)
\(=\left(\sqrt{x}-2\sqrt{y}\right)^2+\left(\sqrt{y}-2\right)^2+12\ge12\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\sqrt{x}=2\sqrt{y}\\\sqrt{y}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\).
Với \(x=16,y=4\)thỏa mãn giả thiết.
Vậy \(minP=12\).
đề gì vậy zời