K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:

·       Chọn 2 chữ số lẻ có  cach; chọn 3 chữ số chẵn có  cách

·    Gọi số có 5 chữ số thỏa mãn đề bài là  .

·    Nếu a5 = 0 thì có 4! Cách chọn  .

·       Nếu a5 0 thì có 2 cách chọn  a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .

·       Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số

Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có  số.

Suy ra có 6000-3120=2880 số cần tìm.

Chọn D.

8 tháng 4 2018

Vậy số cách chọn theo yêu cầu đề bài là: 360

14 tháng 12 2018

Chọn B.

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời hai chữ số lẻ đứng liền nhau là 

(để ý: có 4 cách xếp sao cho hai chữ số lẻ đứng liền nhau là 

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời hai chữ số lẻ đứng liền nhau là 

(để ý: có 3 cách xếp sao cho hai chữ số lẻ đứng liền nhau là 

Suy ra, số các số tự nhiên thỏa đề ra là 

13 tháng 8 2019

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là

(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là  {b,c}).

Suy ra, số các số tự nhiên thỏa đề ra là 

26 tháng 4 2023

Cho \(X=\left\{0;1;2;4;5;6;8;9\right\}\)

Gọi số cần tìm là \(\overline{abcd}\)

Chọn \(d=1,d=5\) hay \(d=9\)\(\Rightarrow\) có 1 cách

Chọn \(a\) có \(6\) cách \(\left(a\ne0,a\ne d\right)\)

Chọn \(b\) có \(5\) cách \(\left(b\ne a,b\ne d\right)\)

Chọn \(c\) có \(4\) cách \(\left(c\ne a,c\ne b,c\ne d\right)\)

Theo Quy tắc nhân, ta có : \(1.6.5.4=120\) cách chọn 4 chữ số khác nhau và là số lẻ.

 

22 tháng 7 2019

Chọn C

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   a b c d e ¯  (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là  

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là 

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).

Suy ra, số các số tự nhiên thỏa đề ra là 

7 tháng 9 2017

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.

Ta có,

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯  (a có thể bằng 0) là .

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯  

Suy ra, số các số tự nhiên thỏa đề ra là .

Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.

12 tháng 12 2018

Đáp án là A.

Gọi số cần lập có dạng:   a 1 a 2 a 3 a 4 a 5

          Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7}  ⇒ C 4 2

          Chọn 3 số chẳn trong nhóm {0;2;4;6} ⇒ C 4 3

          Hoán vị 2 nhóm trên có 5! cách

          * Các số có số a1 = 0

          Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7}  ⇒ C 4 2

          Chọn 2 số chẳn trong nhóm {0;2;4;6}  ⇒ C 3 2

          Hoán vị 2 nhóm trên có 4! cách

          Vậy các số cần tìm: C 4 2 . C 4 3 . 5 !   -   C 4 2 . C 3 2 . 4 !   =   2448  số