K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Bỏ một cái =3 đi nha mk đánh nhầm thông cảm dùm

23 tháng 11 2017

x = 1

y = 1

z = 1

6 tháng 2 2016

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\)

<=>x2z+y2x+z2y=x2y+y2z+z2x

<=>(x2z-x2y)+(y2x-z2x)+(z2y-y2z)=0

<=>x2.(z-y)-x.(z-y)(z+y)+yz.(z-y)=0

<=>(z-y)(x2-xz-xy+yz)=0

<=>(z-y)(x-z)(x-y)=0

<=>x=y=z

Mà x+y+z=3

=>x=y=z=1

6 tháng 2 2016

Có thể   \(x=y=z=1\)

22 tháng 6 2017

Ờ thì AM-GM (là Cô si ko âm đây)

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng theo vế 3 BĐT trên ta có:

\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)

ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)

21 tháng 6 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)

Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)

18 tháng 12 2017

Đề sai kìa bạn ơi 

Nếu x+y+z = 0 thì

B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1

Nếu x+y+z khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1

=> y+z-x = y ; z+x-y = y ; x+y-z = x

=> x=y=z

=> B = (1+1).(1+1).(1+1) = 8 

k mk nha

25 tháng 2 2020

\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)

\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)

22 tháng 10 2018

Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)\(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)

                                                                                      \(\Rightarrow\frac{x+y+z}{x+y+z}=1\)

Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)

                                                                                                                        \(=x+y+z\) 

                                                                                                                          \(=1\)

Vậy B =1 

7 tháng 2 2015

áp dụng tính chất tỉ lệ thức có: 
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có: 1 + y/z=2x/z   và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng : 2x/z . 2y/x . 2z/y = 8xyz/xyz =8

7 tháng 2 2015

lộn ko fải là 1+(9y/z) mà là 1+(y/z)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)

\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

\(\Rightarrow x=y=z\)

\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

18 tháng 4 2021

Áp dụng tính chất dãy tỉ số bằng nhau , ta có

     y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z

TH1 : x + y + z = 0

       => x + y = - z ; y + z = - x và x + z = -y

Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )

               = ( x + y / y ) ( z + y / z ) ( x + z / x )        ( 1 )

               = - z / y . ( - x / z ) ( -y / x )

              = - 1

TH2 : x + y + z khác 0

Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1

thì y + z - x / x = 1         => y + z - x = x                 => y + z = 2x        ( 2 )

     z + x - y / y = 1              z + x - y = y                      z + x = 2y         ( 3 )

     x + y - z / z = 1              x + y - z = z                      x + y = 2z         ( 4 )

Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có 

       B = 2x/y . 2y / z . 2z / x

          = 2 . 2 . 2 = 8

Vậy B = - 1 khi x + y + z = 0

       B = 8 khi x + y + z khác 0

[ xin lỗi nha , tại mình không biết viết phân số ]

16 tháng 7 2020

Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)

Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)

Tương tự:

\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)

\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)

Đẳng thức xảy ra tại x=y=z=1