K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Cho tam giác ABC. Các đường cao BH và CK cắt nhau tại E. Qua B kẻ Bx vuông góc với AB. Qua C kẻ Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D. Chứng minh tứ giác BDCE là hình bình hành - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

23 tháng 11 2017

hình ảnh thứ nhất

a: Xét tứ giác BDCE có 

BD//CE

BE//CD

Do đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nên BC cắt DE tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của DE

d: Xét tứ giác ABDC có 

\(\widehat{ABD}+\widehat{ACD}=180^0\)

Do đó: ABDC là tứ giác nội tiếp

Suy ra: \(\widehat{A}+\widehat{D}=180^0\)

a,
+,Có CK vuông góc AB
            BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
        CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.

a: BH vuông góc CA

CD vuông góc CA

=>BH//CD

b: CH vuông góc AB

AB vuông góc BD

=>BD//Ch

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

 

Bài 2: 

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.