K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

câu này khá khó mình ko biết làm có đúng ko nữa

để \(\left(d1\right)\perp\left(d2\right)\)

\(\Leftrightarrow\)\(\left(k-3\right).\left(2k+1\right)=-1\)

\(\Leftrightarrow2k^2+k-6k-3+1=0\)

\(\Leftrightarrow2k^2-5k-2=0\)

\(\Leftrightarrow k^2-\frac{5}{2}k-1=0\)

\(\Leftrightarrow\)\(k^2-2.k.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-1=0\)

\(\Leftrightarrow\left(k-\frac{5}{4}\right)^2-\frac{41}{16}=0\)

\(\Leftrightarrow\left(k-\frac{5}{4}-\frac{\sqrt{41}}{4}\right)\left(k-\frac{5}{4}+\frac{\sqrt{41}}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k-\frac{5}{4}-\frac{\sqrt{41}}{4}=0\\k-\frac{5}{4}+\frac{\sqrt{41}}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{41}}{4}\\k=\frac{5-\sqrt{41}}{4}\end{cases}}\)  ( Thỏa mãn \(k\ne3;k\ne\frac{-1}{2}\))

              vậy  \(k=\frac{5-\sqrt{41}}{4}\)  ;   \(k=\frac{5+\sqrt{41}}{4}\)

27 tháng 12 2017

cho 3 diem a ,b,c ,d trong do chi co 3 diem a,b,c thang hang. ke cac duong thang di qua 2 trong so 4 diem a,b,c,d . so duong thang phan biet thu duc la bao nhieu . tra loi di xem co duoc khong 

2 tháng 12 2018

Cô hướng dẫn nhé! 

d1, d2, d3 đồng quy 

=> Giả sự M(x, y ) là điểm đồng quy 

tọa độ điểm M là giao điểm của d1, d2 

=> Tìm được điểm M

có được M(x, y) rồi em thay vào d3 để tìm k :)

3 tháng 12 2018

Kĩ hơn đi cô :(

18 tháng 9 2019

Huhu bài toán hay quá =(( 

18 tháng 9 2019

Chihiro  vãi cả hu hu, t giải giúp một đứa bạn thôi mà;(( vả lại t bảo là ko chắc nên đừng ném đá nhá!

a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1

=>3k=8 và -3m=-6

=>k=8/3 và m=2

b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1

=>k=8/3 và m<>2

c: Để hai đường cắt nhau thì k-2<>6-2k

=>k<>8/3

d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1

=>m=2 và k<>8/3

e: m=3

=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1

Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k

=>k<>8/3 và -12+4k=k-2

=>3k=10 và k<>8/3

=>k=10/3

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà