Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)
\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)
\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)
Có: \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Rightarrow x^2+y^2=\frac{25xy}{12}\)
Có: \(P=\frac{x-y}{x+y}\)
\(\Rightarrow P^2=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}=\frac{\frac{25xy}{12}-2xy}{\frac{25xy}{12}+2xy}=\frac{\frac{xy}{12}}{\frac{49xy}{12}}=\frac{1}{49}\)
VÌ: \(x< y< 0\Rightarrow x-y< 0;x+y< 0\)
=> \(P>0\)
=> \(P=\frac{1}{7}\)
mk chưa hiểu ở phần thứ 3 của bước thứ 4 bn trình bày rõ hơn đc ko
Đk: x, y \(\ne\)0
Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)
P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)
P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)
b) Ta có: x2 + y2 + 10 = 2x - 6y
<=> x2 - 2x + 1 + y2 + 6y + 9 = 0
<=> (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)
\(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Rightarrow12x^2+12y^2=25xy\)
\(\Rightarrow12x^2+12y^2+24xy=49xy\)
\(\Rightarrow12\left(x^2+2xy+y^2\right)=49xy\)
\(\Rightarrow\left(x+y\right)^2=\frac{49xy}{12}\)
\(\Rightarrow x+y=\sqrt{\frac{49xy}{12}}\)
Lại có :\(12\left(x^2-2xy+y^2\right)=xy\)
\(\Rightarrow x-y=\sqrt{\frac{xy}{12}}\)
\(\Rightarrow A=\sqrt{\frac{\frac{xy}{12}}{\frac{49xy}{12}}}\)
\(\Rightarrow A=\sqrt{\frac{1}{49}}=\pm\frac{1}{7}\)
Phạm Tuấn Đạt Chỉ kiến thức lớp 7 là đủ rồi bạn ey!À mà \(\sqrt{\frac{1}{49}}=-\frac{1}{7}???\) không có căn bậc 2 của số âm nha bạn!
\(\frac{x^2+y^2}{xy}=\frac{25}{12}\Leftrightarrow\frac{x^2+y^2}{25}=\frac{xy}{12}\)
Đặt \(\frac{x^2+y^2}{25}=\frac{xy}{12}=k\Rightarrow x^2+y^2=25k;xy=12k\)
\(A^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{25k-2.12k}{25k+2.12k}=\frac{25k-24k}{25k+24k}=\frac{1k}{49k}=\frac{1}{49}\)
\(\Rightarrow A=\sqrt{\frac{1}{49}}=\frac{1}{7}\)
\(\frac{x^2+y^2}{xy}=\frac{25}{12}\Rightarrow12\left(x^2+y^2\right)=25xy\)
\(\Rightarrow12x^2+12y^2-25xy=0\Rightarrow12x\left(x-2y\right)-y\left(x-2y\right)=0\Rightarrow\left(12x-y\right)\left(x-2y\right)=0\)
\(x< y< 0\Rightarrow12x< y\Rightarrow12x-y< 0\)
Do đó: \(x-2y=0\Rightarrow x=2y\)
Vậy \(A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Ta có : \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Leftrightarrow\frac{x^2+2xy+y^2-2xy}{xy}=\frac{25}{12}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy}{xy}=\frac{25}{12}\)
\(\Rightarrow xy=12\)(cùng mẫu )
\(\Leftrightarrow\left(x+y\right)^2-2.12=25\)
\(\Leftrightarrow\left(x+y\right)^2=49\)
\(\Leftrightarrow x+y=7\)
Mà \(\hept{\begin{cases}x+y=7\\x.y=12\\x< y\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow A=\frac{x-y}{x+y}=\frac{3-4}{3+4}=-\frac{1}{7}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)