K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)

\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)

Vậy M=\(\frac{1}{4}\)

2 tháng 12 2018

\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)

\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)

\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)

\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)

11 tháng 12 2016

Có: \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Rightarrow x^2+y^2=\frac{25xy}{12}\)

Có: \(P=\frac{x-y}{x+y}\)

\(\Rightarrow P^2=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}=\frac{\frac{25xy}{12}-2xy}{\frac{25xy}{12}+2xy}=\frac{\frac{xy}{12}}{\frac{49xy}{12}}=\frac{1}{49}\)

VÌ: \(x< y< 0\Rightarrow x-y< 0;x+y< 0\)

=> \(P>0\)

=> \(P=\frac{1}{7}\)

11 tháng 12 2016

mk chưa hiểu ở phần thứ 3 của bước thứ 4 bn trình bày rõ hơn đc ko

1 tháng 7 2021

xin lỗi mình mới học lớp 7 thui ko giúp được gì cho bạn rồi 

1 tháng 7 2021

Đk: x, y \(\ne\)0

Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)

P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)

P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)

P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)

b) Ta có: x2 + y2 + 10 = 2x - 6y

<=> x2 - 2x + 1 + y2 + 6y + 9 = 0

<=> (x - 1)2 + (y + 3)2 = 0

<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)

6 tháng 12 2018

\(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Rightarrow12x^2+12y^2=25xy\)

\(\Rightarrow12x^2+12y^2+24xy=49xy\)

\(\Rightarrow12\left(x^2+2xy+y^2\right)=49xy\)

\(\Rightarrow\left(x+y\right)^2=\frac{49xy}{12}\)

\(\Rightarrow x+y=\sqrt{\frac{49xy}{12}}\)

Lại có :\(12\left(x^2-2xy+y^2\right)=xy\)

\(\Rightarrow x-y=\sqrt{\frac{xy}{12}}\)

\(\Rightarrow A=\sqrt{\frac{\frac{xy}{12}}{\frac{49xy}{12}}}\)

\(\Rightarrow A=\sqrt{\frac{1}{49}}=\pm\frac{1}{7}\)

7 tháng 12 2018

Phạm Tuấn Đạt Chỉ kiến thức lớp 7 là đủ rồi bạn ey!À mà \(\sqrt{\frac{1}{49}}=-\frac{1}{7}???\) không có căn bậc 2 của số âm nha bạn!

\(\frac{x^2+y^2}{xy}=\frac{25}{12}\Leftrightarrow\frac{x^2+y^2}{25}=\frac{xy}{12}\)

Đặt \(\frac{x^2+y^2}{25}=\frac{xy}{12}=k\Rightarrow x^2+y^2=25k;xy=12k\)

\(A^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{25k-2.12k}{25k+2.12k}=\frac{25k-24k}{25k+24k}=\frac{1k}{49k}=\frac{1}{49}\)

\(\Rightarrow A=\sqrt{\frac{1}{49}}=\frac{1}{7}\)

7 tháng 12 2018

\(\frac{x^2+y^2}{xy}=\frac{25}{12}\Rightarrow12\left(x^2+y^2\right)=25xy\)

\(\Rightarrow12x^2+12y^2-25xy=0\Rightarrow12x\left(x-2y\right)-y\left(x-2y\right)=0\Rightarrow\left(12x-y\right)\left(x-2y\right)=0\)

\(x< y< 0\Rightarrow12x< y\Rightarrow12x-y< 0\)

Do đó: \(x-2y=0\Rightarrow x=2y\)

Vậy \(A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{1}{3}\)

30 tháng 11 2017

Ta có : \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Leftrightarrow\frac{x^2+2xy+y^2-2xy}{xy}=\frac{25}{12}\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy}{xy}=\frac{25}{12}\)

\(\Rightarrow xy=12\)(cùng mẫu )

\(\Leftrightarrow\left(x+y\right)^2-2.12=25\)

\(\Leftrightarrow\left(x+y\right)^2=49\)

\(\Leftrightarrow x+y=7\)

Mà \(\hept{\begin{cases}x+y=7\\x.y=12\\x< y\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

\(\Rightarrow A=\frac{x-y}{x+y}=\frac{3-4}{3+4}=-\frac{1}{7}\)

6 tháng 12 2018

\(x< y< 0\) mà bạn leminhduc ơi; 3>0; 4>0