K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Áp dụng công thức \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\), ta có:

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

.........

\(\frac{2}{37.38.39}=\frac{1}{37.38}-\frac{1}{38.39}\)

Cộng các vế lại ta được:

\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)

20 tháng 11 2017

em tịt lun

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

25 tháng 7 2016

Câu a)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-2\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-\left(2^{100}+2^{98}+2^{96}+...+2^4+2^2\right)\)
\(=2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(=\frac{2^2\cdot\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{\left(2^{101}+2^{99}+2^{97}+...+2^5+2^3\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{2^{101}-2}{3}\)

6 tháng 4 2017

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2015.2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{2.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2016.2017}\)

\(B=\frac{\frac{1}{1.2}-\frac{1}{2016.1017}}{2}\)

28 tháng 1 2016

B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

  ={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4

  = [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4

  =\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)

 

28 tháng 1 2016

B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

9 tháng 7 2017

Ta có : A = 1.2.3 + 2.3.4 + 4.5.6 + ..... + 98.99.100

=> 6A = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 98.99.100.101

=> 6A = 98.99.100.101 

=> A = \(\frac{98.99.100.101}{6}=16331700\)

9 tháng 7 2017

có 20172 đồng dư 1 mod (3)
   => (20172)50 đồng dư 1 mod (3)
=> (20172)50-1 đồng dư 1-1 = 0 mod (3)
=> dpcm

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

16 tháng 2 2021

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

13 tháng 1 2018

Mình làm mẫu 1 bài nha !

Có : 12A = 1.5.12+5.9.12+....+101.105.12

= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)

= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105

= 1.5.12-1.5.9+101.105.109

= 1155960

=> A = 1155960 : 12 = 96330

Tk mk nha

13 tháng 1 2018

Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4

= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)

= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

= 98.99.100.101

=> D = 98.99.100.101/4 = 24497550

12 tháng 12 2018

C = 1.2.3+ 2.3.4 + 3.4.5 +...+n(n+1) ( n+2)

\(\Rightarrow4C=1.2.3\left(4-0\right)+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

            \(=1.2.3.4-0.1.2.3+2.3.4.5-...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)-0.1.2.3\)

 \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow C=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

12 tháng 12 2018

Thanks