Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3 được dư là 2 , khi chia cho 5 được dư là 4 , khi chia cho 7 được dư là 6 . Các bạn giải chi tiết hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a-2 chia hết cho 3 => 2(a-2) chia hết cho 3 => 2(a-2)+3=2a-1 chia hết cho 3
a-3 chia hết cho 5 => 2(a-3) chia hết cho 5 => 2(a-3)+5=2a-1 chia hết cho 5
a-4 chia hết cho 7 => 2(a-4) chia hết cho 7 => 2(a-4)+7=2a-1 chia hết cho 7
=> 2a-1 là BSC của 3;5;7
a nhỏ nhất khi 2a-1 nhỏ nhất => 2a-1 là BSCNN(3;5;7) => 2a-1=105 => a=53
Vì a chia cho 3 dư 2 , suy ra a = 3k + 2 \(\left(k\inℕ\right)\)
suy ra 2a = 6k + 4 = ( 6k + 3 ) + 1 chia hết cho 3 dư 1 (1)
Vì a chia cho 5 dư 3 , suy ra a = 5k' + 3
suy ra 2a = 10k' + 6 = ( 10k' + 5 ) + 1 chia cho 5 dư 1 (2)
Vì a chia cho 7 dư 4 , suy ra a = 7k' + 4
suy ra 2a = 14k' + 8 = ( 14k + 7 ) + 1 chia cho 7 dư 1 (3)
Từ (1) , (2) , (3) suy ra 2a chia 3,5,7 dư 1
\(\Rightarrow\left(2a-1\right)⋮3,6,7\)
\(\Rightarrow\left(2a-1\right)=BCNN\left(3,5,7\right)\)
Ta có :
\(3=3\)
\(5=5\)
\(7=7\)
\(\Rightarrow BCNN\left(3,5,7\right)=3.5.7=105\)
\(\Rightarrow2a-1=105\)
\(\Leftrightarrow2a=105+1\)
\(\Leftrightarrow2a=106\)
\(\Leftrightarrow a=106:2\)
\(\Leftrightarrow a=53\)
Vậy ..........
KO CHẮC CHẮN LÉM :P
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
Số đó có dạng \(27k+15\) (k \(\in\) N).
Ta có \(27k+15=3.9k+3.5=3.\left(9k+5\right)\) chia hết cho 3.
\(27k+15=9.3k+9+6=9.\left(3k+1\right)+6\) không chia hết cho 9.
a chia 3;5;7 dư 2;4;6
=>a+1 chia hết cho 3;5;7
mà a nhỏ nhất
=>a+1 thuộc BCNN(3;5;7)=3.5.7=105
=>a=104
Vì khi chia a cho 3 được dư là 2 , khi chia cho 5 được dư là 4 , khi chia cho 7 được dư là 6 .
=>a+1 chia hết cho 3, 5 và 7
3=3.1;5=5.1;7=7.1
BCNN(3;5;7)=3.5.7=105
=>a+1=105
=>a=105-1=104
Vậy a=104
K RỒI MÌNH GIẢI CHO