chứng tỏ rằng :
1 . có thể tìm dc n STN liên tiếp đều là hợp số ( n là STN khác 0 )
2 . Nếu p là số nguyên tố thì p200 - 1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
day la cau tra loi :
http://olm.vn/hoi-dap/question/118678.html
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Câu 1
Nếu an chia hết cho 25 => a chia hết cho25 => a2 chia hết cho 25
Do a2 chia hết cho 5 và 150 cũng xhia hết cho 25 nên a2+150 chia hết cho 25
Câu 3
Đặt p=2k hoặc =2k+1
.) Nếu p=2k thì p chia hết cho 2 ( loại)
=> p chỉ có thể bằng 2k+1
=>p+7=2k+1+7=2k+8=2(k+4) chia hết cho2
Vậy p+7 là hợp số
Câu 2 mk chưa hiểu đề lắm
tick nha
2. Nếu p=2 => p^200 - 1 = 2^200-1 = (2^2)^100 = 4^100-1 chia hết cho 3
Mà 4^200-1 > 3 => p^200 - 1 là hợp số
Nếu p >= 3 => p^200 lẻ = > p^200 - 1 chẵn
Mà p^200 - 1 > 2 => p^200 - 1 là hợp số
=> ĐPCM
k mk nha
2. Nếu p=2 => p^200 - 1 = 2^200-1 = (2^2)^100 = 4^100-1 chia hết cho 3
Mà 4^200-1 > 3 => p^200 - 1 là hợp số
Nếu p >= 3 => p^200 lẻ = > p^200 - 1 chẵn
Mà p^200 - 1 > 2 => p^200 - 1 là hợp số
=> ĐPCM