Có tồn tại 2016 số nguyên sao cho tổng và tích của chúng bằng 2016 hay không ? chứng minh khẳng định của bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.
vi 2
2 . 3 =6; 2 .4 =8
suy ra a chia 20 ko the du 8
a chia 12 ko the du 6
2.
=4a - 4b + 7b
=4 . [a - b] + 7b
a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7
3.
a 3n - 3 + chia het n -1
3[n - 1] + 7 chia het n - 1
vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1
vay n = 8
a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ
Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4
=> Không tồn tại 3 số như vậy
b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ
Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số lẻ là số chẵn => Không tồn tại 4 số thỏa mãn tổng là số lẻ
A.Tích của chúng tận cùng bằng 1 =>đó là số lẻ =>không có ba số tự nhiên(vì đuôi 4 chứng tỏ số đó là chẵn, mà đuôi 3 là số lẻ nên không có số nào như vậy)B.Tổng là lẻ => 4 số đó là lẻ
4 số tự nhiên lẻ =>tổng là chẵn =>không có 4 số nào như vậy
Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)
Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k
Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017
- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)
- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)
\(\Rightarrow2^j-2^i⋮2017\)
\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)
\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)
\(\Rightarrow n=j-i\) thỏa mãn yêu cầu
cái này
dùng điricle
, bạn
học
đi ric lê
chưa