cho a và b là các số thỏa mãn a>b>0 và \(a^3-a^2.b+a.b^2-6b^3=0.\)
tính giá trị của biểu thức: B=\(\frac{a^4-4.b^4}{b^4-4.a^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Ta có a3_ a2b +ab2 _6b3=0
<=> (a3 - 2a2 b) + (a2 b - 2ab2) + (3ab2 - 6b3) = 0
<=> (a - 2b)(a2 + ab + 3b2) = 0
Vì a >b>0 nên (a2 + ab + 3b2) >0
=> a - 2b = 0 <=> a = 2b
Thế vào B=a4- 4b4 /b4 -4a4 = \(\frac{-4}{21}\)
Chia hai vế của giải thiết cho \(b^3\),ta có:
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0\) Đặt \(\frac{a}{b}=v\) (v nguyên)
Suy ra \(v^3-v^2+v-6=0\) (1)
Giải (1),tìm được v = 2 tức là \(\frac{a}{b}=2\)
Thay vào B,ta có: \(B=\frac{\frac{a^{\text{4 }}}{b^4}.b^4-4b^4}{b^4-4.\frac{a^4}{b^4}.b^4}=\frac{b^4\left(2^4-4\right)}{b^4\left(1-4.2^4\right)}\)\(=\frac{12}{-63}=-\frac{4}{21}\)
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)