K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

A B C E D G F I H O

a) Xét \(\Delta\)IFG và \(\Delta\)HBG có:

GF=GB

IF=HB                                => \(\Delta\)IFG=\(\Delta\)HBG (c.g.c)  (1)

^GFI=^GBH=900

Ta thấy: BH+HC=BC=GF. Mà BH=DE hay BH=AC

=> AC+HC=GF <=> AH=GF

=> \(\Delta\)EAH=\(\Delta\)IFG (c.g.c) (2)

Tương tự: AC+HC=BH+HC => AH=BG => \(\Delta\)EAH=\(\Delta\)HBG (c.g.c) (3)

Lại có: BC=CF => BH+HC=CD+DF. Mà BH=DE=CD

=> HC=DF =>  HC+AC=DF+IF (Vì AC=DE=IF)

=> \(\Delta\)EAH=\(\Delta\)EDI (c.g.c) (4)

Từ (1), (2), (3) và (4) => \(\Delta\)EDI=\(\Delta\)EAH=\(\Delta\)HBG=\(\Delta\)IFG (đpcm)

b) Ta có:

\(\Delta\)EDI=\(\Delta\)EAH=\(\Delta\)HBG=\(\Delta\)IFG (cmt)

=> EI=EH=HG=IG (Các cạnh tương ứng) => Tứ giác EIGH là hình thoi (5)

Mà \(\Delta\)EAH=\(\Delta\)HBG => ^EHA=^HGB (2 góc tương ứng)

Thấy ^HGB+^BHG=900. => ^EHA+^BHG=900 => ^GHE=900 (6)

Từ (5) và (6) => Tứ giác EIGH là hình vuông (đpcm).

c) Tứ giác EIGH là hình vuông và O là giao 2 đường chéo => OE=OH.

Ta có: ^OEA=^AEH+^OEH

^OHB=^OHG+^BHG.

Mà ^OEH=^OHG=450, ^AEH=^BHG (cmt) => ^OEA=^OHB.

Xét \(\Delta\)OEA và \(\Delta\)OHB:

OE=OH

^OEA=^OHB              => \(\Delta\)OEA=\(\Delta\)OHB (c.g.c)

EA=HB (EA=DE)

=> OA=OB (2 cạnh tương ứng) => Điểm O thuộc đường trung trực của AB (7)

^EOA=^HOB

 Lại có: ^EOH=^EOA+^AOH=900 => ^HOB+^AOH=900 => ^AOB=900

Mà OA=OB =>Tam giác AOB vuông cân tại O

=> Khoảng cách từ O tới AB bằng 1/2 đoạn AB (8)

Từ (7) và (8) => O là điểm cố định trên trung trực của AB vì AB cố định và O luôn cách AB 1 khoảng bằng 1/2 AB.

14 tháng 11 2017

Từ một điểm M nằm ngoài đường tròn(O) ta vẽ hai tiếp tuyến MA,MB với đường tròn . Trên tia OB lấy điểm C sao cho BC = BO . Chứng minh góc BMC = 1/2 góc BMA

13 tháng 11 2017
Help me
28 tháng 2 2020

a) Xét ΔIFG và Δ HBG có:
GF=GB
IF=HB                               

góc GFI= góc GBH=90 độ 

=>  ΔIFG=Δ HBG (c.g.c)  (1)

Ta thấy: BH+HC=BC=GF.

Mà BH=DE hay BH=AC
=> AC+HC=GF <=> AH=GF
=> ΔEAH=ΔIFG (c.g.c) (2)
Tương tự: AC+HC=BH+HC => AH=BG => ΔEAH=Δ HBG (c.g.c) (3)
Lại có: BC=CF => BH+HC=CD+DF. Mà BH=DE=CD
=> HC=DF =>  HC+AC=DF+IF (Vì AC=DE=IF)
=> ΔEAH=ΔEDI (c.g.c) (4)
Từ (1), (2), (3) và (4) => ΔEDI=ΔEAH=Δ HBG=ΔIFG (đpcm)
b) Ta có:
ΔEDI=ΔEAH=Δ HBG=ΔIFG (cmt)
=> EI=EH=HG=IG (Các cạnh tương ứng)

=> Tứ giác EIGH là hình thoi (5)
Mà ΔEAH=Δ HBG

=> góc EHA= góc HGB (2 góc tương ứng)
Ta Thấy góc HGB + góc BHG=90 độ
. => ^EHA+^BHG=90 độ
 => góc GHE=90độ (6)
Từ (5) và (6) => Tứ giác EIGH là hình vuông (đpcm).
c) Tứ giác EIGH là hình vuông và O là giao 2 đường chéo

=> OE=OH.
Ta có: góc OEA=góc AEH+ góc OEH
góc OHB= góc OHG + gócBHG.
Mà góc OEH = gócOHG=45 độ 
, góc AEH = gócBHG (cmt)

=> góc OEA =góc OHB.

Xét ΔOEA và ΔOHB:
OE=OH
góc OEA =góc OHB            
EA=HB (EA=DE)
=> tam giác OEA = tam giác OHB

=> OA=OB (2 cạnh tương ứng)

=> Điểm O thuộc đường trung trực của AB (*)
Ta có : góc EOA=góc HOB
 Lại có: góc EOH= góc EOA +  góc AOH=90 độ
 => góc HOB + góc AOH=90 độ 
 => góc AOB=90độ 
Mà OA=OB =>Tam giác AOB vuông cân tại O
=> Khoảng cách từ O tới AB bằng 1/2 đoạn AB (**)
Từ (*) và (**) => O là điểm cố định trên trung trực của AB vì AB cố định và O luôn cách AB 1 khoảng bằng 1/2 AB