cho đường tròn (O)có các dây AB và CD có AB>CD ,các tia AB và CD cắt nhau tại điểm M nằm bên ngoài dường tròn .gọi H và K theo thứ tự là trung điểm của AB và CD.So sánh độ dài MH và MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối OE ta có: AB = CD
=> OH = OK (Định lí 3)
Hai tam giác vuông OEH và OEK có:
OE là cạnh chung
OH = OK
=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)
=> EH = EK (1). (đpcm)
Ta có: OH ⊥ AB
Mà AB = CD (gt) suy ra AH = KC (2)
Từ (1) và (2) suy ra:
EA = EH + HA = EK + KC = EC
Vậy EA = EC. (đpcm)
a) Nối OE ta có: AB = CD
=> OH = OK (Định lí 3)
Hai tam giác vuông OEH và OEK có:
OE là cạnh chung
OH = OK
=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)
=> EH = EK (1). (đpcm)
b) Ta có: OH ⊥ AB
Mà AB = CD (gt) suy ra AH = KC (2)
Từ (1) và (2) suy ra:
EA = EH + HA = EK + KC = EC
Vậy EA = EC. (đpcm)
a) Nối OE ta có: AB = CD
=> OH = OK (Định lí 3)
Hai tam giác vuông OEH và OEK có:
OE là cạnh chung
OH = OK
=> \(\Delta OEH=\Delta OEK\)( cạnh huyền, cạnh góc vuông )
=> EH = EK (1). (đpcm)
b) Ta có: \(OH\perp AB\)
\(AH=\frac{1}{2}AB\left(đl1\right)\)
Tương tự , ta có : \(KC=\frac{1}{2}CD\)
Mà AB = CD (gt) suy ra AH = KC (2)
Từ (1) và (2) suy ra:
EA = EH + HA = EK + KC = EC
Vậy EA = EC (đpcm)
Ta có: HA = HB (gt)
Suy ra : OH ⊥ AB (đường kính dây cung)
Lại có : KC = KD (gt)
Suy ra : OK ⊥ CD (đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH (dây lớn hơn gần tâm hơn)
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
O M 2 = O H 2 + H M 2
Suy ra : H M 2 = O M 2 - O H 2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
O M 2 = O K 2 + K M 2
Suy ra: K M 2 = O M 2 - O K 2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: H M 2 > K M 2 hay HM > KM
a)Vì HA=HB nên OH⊥AB
Vì KC=KD nên OK⊥CD
Mặt khác, AB=CD nên OH=OK (hai dây bằng nhau thì cách đều tâm).
ΔHOE=ΔKOE (cạnh huyền, cạnh góc vuông)
Suy ra EH=EK. (1)
b) Ta có AH=KC (một nửa của hai dây bằng nhau). (2)
Từ (1) và (2) suy ra EH+HA=EK+KC hay EA=EC.
a, Ta có : d(O;AB) = OH
d(O;CD) = OK
AB = CD => OH = OK => EB = ED
mà H ; K lần lượt là trung điểm AB và CD => EH = EK
b, Vi OH = OK => AE = EC
Bài tập 13 trang 106 SGK Toán 9 Tập 1 - H7.net
Câu a: Ta có:
AH=HB⇒OH⊥ABAH=HB⇒OH⊥AB
KC=KD⇒OK⊥CDKC=KD⇒OK⊥CD
Lại có:
AB=CD⇒OH=OKAB=CD⇒OH=OK
⇒ΔHOE=ΔKOE(ch.cgv)⇒ΔHOE=ΔKOE(ch.cgv)
⇒EH=EK(1)⇒EH=EK(1)
Câu b: Ta lại có:
AB=CD⇔AB2=CD2⇔AH=CK(2)AB=CD⇔AB2=CD2⇔AH=CK(2)
Từ (1) và (2):
⇒EH+HA=EK+KC⇔EA=EC
a. Ta có: HA = HB ( gt )
Suy ra : \(OH\perp AB\) ( đường kính dây cung )
Lại có : KC = KD ( gt )
Suy ra : \(OK\perp CD\)( đường kính dây cung )
Mà AB > CD ( gt )
Nên OK > OH ( dây lớn hơn gần tâm hơn )
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
OM2 = OH2 + HM2
Suy ra : HM2 = OM2 – OH2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
OM2 = OK2 + KM2
Suy ra: KM2 = OM2 – OK2 (2)
Mà OH < OK ( cmt ) (3)
Từ (1) (2) và (3) suy ra: HM2 > KM2 hay HM > KM