Chứng minh rằng;
a/Số 17 ko viết được dưới dạng tổng của ba hợp số khác nhau.
b.Mọi số lẻ lớn hơn 17 đều viết được dưới dạng tổng của ba hợp số khác nhau
Giúp mình giải bài này nha các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
a: Xét ΔCIA và ΔCIM có
CI chung
IA=IM
CA=CM
Do đó: ΔCIA=ΔCIM
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔABM=ΔDBM
Suy ra; BA=BD
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(CN=ND=\dfrac{CD}{2}\)
mà AB=CD
nên AM=MB=CN=ND
Xét ΔMAP và ΔNCQ có
MA=CN
\(\widehat{A}=\widehat{C}\)
AP=CQ
Do đó: ΔMAP=ΔNCQ
b: Ta có: BQ+CQ=BC
AP+DP=AD
mà BC=AD
và CQ=AP
nên BQ=DP
Xét ΔMBQ và ΔNDP có
MB=ND
\(\widehat{B}=\widehat{D}\)
BQ=DP
Do đó: ΔMBQ=ΔNDP
a: Xét ΔEAI và ΔECD có
EA=EC
góc AEI=góc CED
EI=ED
=>ΔEAI=ΔECD
=>AI=CD
b: ΔEAI=ΔECD
=>góc EAI=góc ECD
=>AI//CD
c: Xét ΔDAI và ΔBDC có
DA=BD
AI=DC
DI=BC
=>ΔDAI=ΔBDC
d: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>DE=1/2BC và ED//BC