Tìm giá trị lớn nhất của biểu thức:C= -|3x-1|+7-3x
Ai viết đúng cách làm ra mình cho 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 )
= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4
Dấu ''='' xảy ra khi x = -1
Vậy GTLN C là 4 khi x = -1
D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 )
=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 )
= - ( x + 3/2 )^2 + 37/4 =< 37/4
Dấu ''='' xảy ra khi x = -3/2
Vậy GTLN D là 37/4 khi x = -3/2
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(m=\)28 - \(|3x+12|\)
\(|3x+12|\)\(\ge0\)với \(\forall\)x
\(\Rightarrow\)28 - \(|3x+12|\)\(\le\)28
\(\Rightarrow\)\(m\le28\)
Do đó \(max\)\(m\)là 28.
Dấu "=" xảy ra khi \(|3x+12|\)= 0 \(\Rightarrow\)3x + 12 = 0 \(\Rightarrow\)3x = -12 \(\Rightarrow\)x = -4.
Vậy \(max\)\(m\)là 28 khi x = -4
~ HOK TỐT ~
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
câu 1: =15
câu 2:=-98
câu 3: 54-(-16)-(-13)+27
= 70 - 14
= 56