Chứng minh rằng \(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+...+\sqrt{99.100+\frac{1}{101}}+\sqrt{100.101+\frac{1}{102}}< 5096\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề là thế này :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
= \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
ta có \(\frac{1}{\sqrt{1.2}}khác\frac{1}{\sqrt{1}+\sqrt{2}}\)
................................
\(\frac{1}{\sqrt{99.100}}khấc\frac{1}{\sqrt{99}+\sqrt{100}}\)
Áp dụng
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}<\frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
có phải không?
mình giải nhé:
Ta có các số trong ngoặc có dạng: \(\sqrt{x\left(x+1\right)+\frac{1}{x+2}}< \sqrt{x\left(x+1\right)+\frac{1}{4}}\)chỗ này nếu bạn chưa hiểu mình sẽ nói nhé với \(x\ge3\)
Vậy đặt cả cái đề bài cần chứng minh là A. Ta có:
\(A< \sqrt{3.4+\frac{1}{4}}+\sqrt{4.5+\frac{1}{4}}+...+\sqrt{102.103+\frac{1}{4}}=3,5+4,5+...+102,5=5300\)
đấy là điều phải chứng minh nhé
......................?
mik ko biết
mong bn thông cảm
nha ................