Cho ba số \(a,b,c\in Q\) khác nhau từng đôi một và khác 0 thỏa \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Chứng minh: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)không phụ thuộc và giá trị của \(a,b,c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Lười quá, bn tham khảo nhé:
Bấm vô đây
Câu hỏi của Nguyen Thi Hoai Linh - Toán lớp 7 - Học toán với OnlineMath
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\left(1\right)\)
Xét 2 trường hợp:
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào giá trị của a; b; c (đpcm)
Từ (1) ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\) \(\Rightarrow\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào giá trị của a; b; c (đpcm)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}=\frac{1}{2}\)
\(\Rightarrow\begin{cases}2a=b+c\\2b=c+a\\2c=b+a\end{cases}\)
Thay vào M ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> M = 6 \(\forall a;b;c\)
Vậy giá trị của M không phụ thuộc vào giá trị của các biến a ; b ; c
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\)\(\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
\(\Rightarrow\)\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
...
Chúc bạn học tốt ~
Cách easy nhất:
Đặt \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=k\Rightarrow a=k\left(b+c\right);b=k\left(a+c\right);c=k\left(a+b\right)\)
Thay vào,ta có:\(\frac{b+c}{a}=\frac{b+c}{k\left(b+c\right)}=\frac{1}{k}\) (1)
Tương tự với hai đẳng thức còn lại,được: \(\frac{a+c}{b}=\frac{1}{k}\) (2)
và \(\frac{a+b}{c}=\frac{1}{k}\) (3)
Từ (1),(2) và (3) ta có: \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\left(=\frac{1}{k}\right)^{\left(đpcm\right)}\)
Ta có
a/(b+c)=b/(a+c)=c/(a+b)
=>(b+c)/a=(a+c)/b=(a+b)/c=(b+c+a+c+a+b)/(a+b+c)=2(a+b+c)/(a+b+c)=2
=>(b+c)/(a+(a+b)/c+(a+b)/c=2+2+2=6
=>(b+c)/a+(a+b)/c+(a+b)/c không phụ thuộc vào giá trị của a,b,c (đpcm)
Vậy............
Nhớ thanks nha
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
Xét 2 trường hợp :
TH1 : Nếu a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+b=-c\\a+c=-b\end{cases}}\).Ta có :\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-1+-1+-1=-3\). Không phụ thuộc vào giá trị của a ; b ; c
TH2 : Nếu \(a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Có : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\) -Không phụ thuộc vào các giá trị a ; b ; c (2)
Từ (1) và (2)
=> ĐPCM
@Phạm Tuấn Đạt cho 3 số đôi 1 khác 0 =>a+b+c khác 0 => ko cần phải xét