K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Ta có :\(A=3+3^2+3^3+...+3^{2008}\)(1)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)(2)

Lấy (2) trừ đi 1 ta có :

\(\Rightarrow2A=3^{2009}-3\)

Ta lại có :

\(2A+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

9 tháng 11 2017

Ta có: \(A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)

Trừ \(3A-A=3^2+3^3+3^4+...+3^{2009}-3-3^2-3^3-...-3^{2008}\)

\(\Rightarrow2A=3^{2009}-3\)

\(2A=3^x-3\)

\(\Rightarrow3^x=3^{2009}\)

\(\Rightarrow x=2009.\)

Vậy x = 2009.

10 tháng 11 2017

\(a=3+3^2+3^3+...+3^{2008}\)

\(3a=3^2+3^3+3^4+...+3^{2009}\)

\(3a-a=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)

\(2a=3^{2009}-3\)

\(2a+3=3^{2009}=3^x\)

\(x=2009\)

9 tháng 11 2017

 ta có: 
(x+3).(x+4)>0 
<=>x^2 + 7x + 12 > 0. 
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4 
x2= - 3 
hệ số a = 1 >0 
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3. 
Có thể xảy ra hai trường hợp: 
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1) 
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2) 
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4

21 tháng 2 2020

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x + 1) = 99/100
1- 1/2 +1/2-1/3+1/3-1/4+...+ 1/x - 1/ x+ 1 = 99/100
1 - 1/ x+1 = 99/ 100
=> (100 - 1)/ x+1 = 99 / 100
=> x+1 = 100 => x=99

21 tháng 2 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

\(\Rightarrow x+1=100\)

\(\Rightarrow x=99\)

30 tháng 8 2017

minh tinh ra x = -3

viết thế này bố thằng nào hiểu được

\(A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A=3\cdot\left(3+3^2+3^3+...+3^{2008}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)

\(\Rightarrow2A=3^{2009}-3\)

Ta có: \(2A+3=3^x\)

\(\Rightarrow3^{2009}-3+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

17 tháng 11 2019

Trả lời :

Nhân hai vế với 3 , ta được :

  \(3A=3^2+3^3+3^4+...+3^{2009}\)    ( 2 )

-   \(A=3+3^2+3^3+...+3^{2008}\)      ( 1 )

__________________________________________

\(2A=3^{2009}-3\)

Từ ( 1 ) và ( 2 ), ta có :

\(2A=3^{2009}-3\Leftrightarrow2A+3=3^{2009}\Rightarrow3^x=3^{2009}\Rightarrow x=2009\)

     - Study well -

13 tháng 10 2017

\(A=3^1+3^2+...+3^{2006}\)

\(3A=3^2+3^3+...+3^{2007}\)

\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)

\(2A=3^{2007}-3\)

\(A=\frac{3^{2007}-3}{2}\)

\(2A+3=3^x\)

\(\left(3^{2007}-3\right)+3=3^x\)

\(3^{2007}+\left(-3\right)+3=3^x\)

\(3^{2007}+\left[\left(-3\right)+3\right]=3^x\)

\(\Rightarrow3^{2007}=3^x\)

\(\Rightarrow x=2007\)

13 tháng 10 2017

a) A bằng 31+32+33+34+...+32006

3A bằng 3.(31+32+33+34+...+32006)

3A bằng 32+33+34+35+...+32007

3A-A bằng (32+33+34+35+...+32007) - (31+32+33+34+...+32006)

  2A   bằng        32007-31

    A   bằng    (32007-3) : 2 

b) 2A+3 bằng 3x

Thay 2A bằng 32007-3, ta có :

2A+3 bằng 3x

32007-3+3 bằng 3x

32007 bằng 3x

suy ra x bằng 2007

Vậy x bằng 2007

16 tháng 1 2018

A= 3+3^2+3^3+...+3^2008 

3A=3^2+3^3+3^4+...+3^2008+3^2009

3A - A= (3^2+3^3+3^4+...+3^2008+3^2009)-(3+3^2+3^3+...+3^2008)

2A= 3^2009-3

=>2A+3=3^2009

=>3^x=3^2009

=>x=2009

vậu x= 2009

16 tháng 1 2018

3.A=3^2+3^3+3^4+...+3^2009

3.A-A=(3^2+3^3+3^4+...+3^2009)-(3+3^2+3^3+...+3^2008)

2.A=3^2009-3

2.A+3=3^2009-3+3

2.A+3=3^2009

đúng k cho mình nhé

20 tháng 12 2016

Câu 4:
Giải:

Ta có:

\(n+1⋮2n-3\)

\(\Rightarrow2\left(n+1\right)⋮2n-3\)

\(\Rightarrow2n+2⋮2n-3\)

\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)

\(\Rightarrow5⋮2n-3\)

\(\Rightarrow2n-3\in\left\{1;5\right\}\)

+) \(2n-3=1\Rightarrow n=2\)

+) \(2n-3=5\Rightarrow n=4\)

Vậy \(n\in\left\{2;4\right\}\)

*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.

20 tháng 12 2016

1)Ta có:[a,b].(a,b)=a.b

120.(a,b)=2400

(a,b)=20

Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))

\(\Rightarrow20k\cdot20m=2400\)

\(400\cdot k\cdot m=2400\)

\(k\cdot m=6\)

Mà ƯCLN(k,m)=1,\(k,m\in N\)

Ta có bảng giá trị sau:

k2316
m3261
a406020120
b604012020

Mà a,b là SNT\(\Rightarrow\)a,b không tìm được

2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15

Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)

Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)

\(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)