Cho A = \(3+3^2+3^3+...+3^{2008}\)
Tìm x biết 2A + 3 = 3x
Mai mk thi r . HELP ME !!!! Thanks các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)
Trừ \(3A-A=3^2+3^3+3^4+...+3^{2009}-3-3^2-3^3-...-3^{2008}\)
\(\Rightarrow2A=3^{2009}-3\)
Mà \(2A=3^x-3\)
\(\Rightarrow3^x=3^{2009}\)
\(\Rightarrow x=2009.\)
Vậy x = 2009.
\(a=3+3^2+3^3+...+3^{2008}\)
\(3a=3^2+3^3+3^4+...+3^{2009}\)
\(3a-a=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)
\(2a=3^{2009}-3\)
\(2a+3=3^{2009}=3^x\)
\(x=2009\)
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x + 1) = 99/100
1- 1/2 +1/2-1/3+1/3-1/4+...+ 1/x - 1/ x+ 1 = 99/100
1 - 1/ x+1 = 99/ 100
=> (100 - 1)/ x+1 = 99 / 100
=> x+1 = 100 => x=99
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
\(A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A=3\cdot\left(3+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow2A=3^{2009}-3\)
Ta có: \(2A+3=3^x\)
\(\Rightarrow3^{2009}-3+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Trả lời :
Nhân hai vế với 3 , ta được :
\(3A=3^2+3^3+3^4+...+3^{2009}\) ( 2 )
- \(A=3+3^2+3^3+...+3^{2008}\) ( 1 )
__________________________________________
\(2A=3^{2009}-3\)
Từ ( 1 ) và ( 2 ), ta có :
\(2A=3^{2009}-3\Leftrightarrow2A+3=3^{2009}\Rightarrow3^x=3^{2009}\Rightarrow x=2009\)
- Study well -
\(A=3^1+3^2+...+3^{2006}\)
\(3A=3^2+3^3+...+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
\(2A+3=3^x\)
\(\left(3^{2007}-3\right)+3=3^x\)
\(3^{2007}+\left(-3\right)+3=3^x\)
\(3^{2007}+\left[\left(-3\right)+3\right]=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)
a) A bằng 31+32+33+34+...+32006
3A bằng 3.(31+32+33+34+...+32006)
3A bằng 32+33+34+35+...+32007
3A-A bằng (32+33+34+35+...+32007) - (31+32+33+34+...+32006)
2A bằng 32007-31
A bằng (32007-3) : 2
b) 2A+3 bằng 3x
Thay 2A bằng 32007-3, ta có :
2A+3 bằng 3x
32007-3+3 bằng 3x
32007 bằng 3x
suy ra x bằng 2007
Vậy x bằng 2007
A= 3+3^2+3^3+...+3^2008
3A=3^2+3^3+3^4+...+3^2008+3^2009
3A - A= (3^2+3^3+3^4+...+3^2008+3^2009)-(3+3^2+3^3+...+3^2008)
2A= 3^2009-3
=>2A+3=3^2009
=>3^x=3^2009
=>x=2009
vậu x= 2009
3.A=3^2+3^3+3^4+...+3^2009
3.A-A=(3^2+3^3+3^4+...+3^2009)-(3+3^2+3^3+...+3^2008)
2.A=3^2009-3
2.A+3=3^2009-3+3
2.A+3=3^2009
đúng k cho mình nhé
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
Ta có :\(A=3+3^2+3^3+...+3^{2008}\)(1)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)(2)
Lấy (2) trừ đi 1 ta có :
\(\Rightarrow2A=3^{2009}-3\)
Ta lại có :
\(2A+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)