cho 4 số a;b;c;d thỏa mãn điều kiện ac>2(b+d) cmr có ít nhất 1 trong cac bất đẳng thức sau là sai: a^2 <4b;c^2 <4d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có \(\frac{12+15+15+a}{4}=a\)
=> 4a=42+a
3a=42
a=14
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Có \(36=4\times9\), \(A\) chia cho \(4\) dư \(2\) nên \(A\) chia cho \(36\) được số dư là một số chia cho \(4\) dư \(2\). Do đó số dư của \(A\) khi chia cho \(36\) có thể là: \(2,6,10,14,18,22,26,30,34\).
Tương tự \(A\) chia cho \(9\) có dư \(4\) nên số dư của \(A\) chia cho \(36\) là một số chia cho \(9\) dư \(4\) nên có thể là: \(4,13,22,31\).
Suy ra số dư của \(A\) cho \(36\) là \(22\).
A = 4+4^2+4^3+...+4^39+4^40
4A= 4^2+4^3+...+4^39+4^40+4^41
4A-A=4^41-4
A=\(\frac{\text{4^41-4}}{3}\)
Vì a chia cho 4 dư 2 nên đặt \(a=4k+2\left(k\inℕ\right)\)
\(\Rightarrow a^2=\left(4k+2\right)^2=16k^2+16k+4=4\left(4k^2+4k+1\right)⋮4\)
Vậy a2 chia cho 4 dư 0.