K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

Mình cảm ơn ạ

17 tháng 6 2021

cho : f (x) = 0

=> (x−1)(x+2)=0

=>x−1=0 và x+2=0

=>x=1vàx=-2

Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)

Ta có: g(1)=13+a⋅12+b⋅1+2=0

⇒1+a+b+2=0

⇒3+a+b=0

⇒b=−3−a (1)

 

Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0

⇒−8+4a−2b+2=0

⇒2⋅(−4)+2a+2a−2b+2=0

⇒2⋅(−4+a+a−b+1)=0

⇒(−3+2a−b)=0

=> 2a  b = 3 (2)

thay (1) vao (2) ta dc

2a−(−3−a)=3

⇒a=0

Do b=−3-a

=>b=3

Vậy a = 0 ; b = 3

 

27 tháng 4 2022

f(x) = 0 => ( x - 1).( x + 2) = 0

=> th1: x - 1= 0 =>x = 1

     th2: x + 2 = 0 => x = -2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên x = 1 và x = -2 là nghiệm của g(x)

* thay x = 1 vào g(x) = 0

=> 1 + a + b + 2 = 0 => a+ b = -3 (1)

* thay x = -2 vào g(x) = 0

=> -8 + 4a - 2b + 2 = 0

=> 4a - 2b = 6

=> 2a -b = 3 (2)

Từ (1) và (2) => a + b = -3

                         2a - b = 3

=> 3a =0

     b = -3 -a

=> a = 0

     b = -3

------------ Chúc cậu học tốt------

Tick cko tớ nhé ~

 

`f(x)  = (x-1)(x+2) = 0`.

`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\) 

Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.

`<=> a + b = -3`.

Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.

`<=> 4a - 2b = 6`.

`<=> 2a - b = 6`.

`=> ( a + b) + (2a - b) = -3 + 6`.

`=> 3a = 3`.

`=> a = 1.`

`=> b = -4`.

Vậy `(a,b) = {(1, -4)}`.

17 tháng 5 2022

sai rồi kìa bạn ơi

 

6 tháng 12 2017

Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .

Ta có đồng thời:

   \(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)

Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:

\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)

=> \(1-x_0=0\)

=> \(x_0=1\)

Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.

Để  x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1