Giúp mình với
Cho a,b,c thỏa mãn điều kiện:
a^4b=b^4c=c^4a và a+b+c khác 0.CMR:A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca=3\Rightarrow\left\{{}\begin{matrix}a+b+c\ge3\\abc\le1\end{matrix}\right.\)
Ta sẽ chứng minh \(P\le\dfrac{3}{8}\)
\(P\le\dfrac{a}{6a+2}+\dfrac{b}{6b+2}+\dfrac{c}{6c+2}\) nên chỉ cần chứng minh: \(\dfrac{a}{3a+1}+\dfrac{b}{3b+1}+\dfrac{c}{3c+1}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3a+1}+\dfrac{1}{3b+1}+\dfrac{1}{3c+1}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{\left(3a+1\right)\left(3b+1\right)+\left(3b+1\right)\left(3c+1\right)+\left(3c+1\right)\left(3a+1\right)}{\left(3a+1\right)\left(3b+1\right)\left(3c+1\right)}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6\left(a+b+c\right)+30}{27abc+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)
\(\Rightarrow\dfrac{6\left(a+b+c\right)+30}{27+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)
\(\Leftrightarrow24\left(a+b+c\right)+120\ge165+9\left(a+b+c\right)\)
\(\Leftrightarrow a+b+c\ge3\) (đúng)
Đáp án:
Cho a,b,c thỏa mãn:
2ab(2b-a)-2ac(c-2a)-2bc(b-2c)= 7abc
CMR:Tồn tại 1số bằng 2 số kia.
Giải thích các bước giải:
\(\frac{4a}{b}=\frac{4b}{c}=\frac{4c}{a}=\frac{4a+4b+4c}{b+c+a}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
=> 4b=4a =>b=a
=> 4b=4c => b=c
=> a=b=c
\(A\le\frac{1}{27}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^3\)
Mặt khác :
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3\left[4\left(a+b+c\right)+3\right]}\)
\(=3\sqrt{5}\)
\(\Rightarrow A\le\frac{1}{27}\left(3\sqrt{5}\right)^3=5\sqrt{5}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)
TH1: \(a+b+c=0\)
=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 =0
=> 2b -8 =0
=> 2b = 4
=> b = 2.
=> a = 5; c = - 5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.
TH2: a + b + c khác 0.
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)
\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)
=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)
Từ (1) => \(a+b+c=1\left(4\right)\)
Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2
Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4 => a = 4/3
Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3
=> A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)
\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương
\(\frac{a+b+c}{2}\) =\(\frac{a+b-7}{4c}\)=\(\frac{b+c+3}{4a}\)=\(\frac{a+c+4}{4b}\)
Xảy ra 2 trường hợp, mình làm trường hợp 1 thôi.
TH1 : \(a+b+c=0\)
=>\(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 = 0
=> 2b - 8 = 0
=> 2b = 4
=> b = 2
=> a = 5 , c = -5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017.(-5) = - 9963