K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)

Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :

\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)

25 tháng 2 2018

x+y+z=0;xy+yz+xz=0

⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0

⇒(x+y+z)2=x2+y2+z2=0

⇒x=y=z=0

⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1

19 tháng 6 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)

26 tháng 4 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

1 tháng 6 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

17 tháng 12 2015

nói chứ toán của anh choa đăng cho vi hihi

8 tháng 3 2018

ta có : xy + yz +zx = 0

        * yz = -xy-zx

\(\Rightarrow\)*xy = - yz - zx

         *zx= -xy-yz

ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)

          M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)

          M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)

          M = -y - x - x - z - y - z

         M = -2y - 2x - 2z

         M = -2( x+y+z )

   mà x+y+z=-1

         M = (-2) . (-1)

         M =2

     

8 tháng 3 2018

 Quản lý

11 tháng 12 2015

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

11 tháng 12 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0

1 tháng 6 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

1 tháng 6 2015

copy trong câu hỏi tương tự à 

13 tháng 12 2016

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

7 tháng 8 2015

sao ko trình bày ra trả lời thế ai bik