K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 11 2021

a. \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)

b. với n khác 0 \(3^{2n}=9^n>8^n=2^{3n}\)

Còn với n=0 thì \(3^{2n}=2^{3n}=1\)

19 tháng 9 2016

Ta có:

\(3^{2n}=\left(3^2\right)^n=9^n\)

\(2^{3n}=\left(2^3\right)^n=8^n\)

Mà \(9^n>8^n\) nên \(3^{2n}>2^{3n}\)

 

19 tháng 9 2016

cảm ơn

 

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

22 tháng 4 2017

a,

Ta có: 

2225 = ( 23 )75 = 875

3151 > 3150 = ( 32 ) 75 = 975 

Vì 8 < 9 \(\Rightarrow\) 875 < 975

\(\Rightarrow\)2225 < 3150 < 3151

Vậy 2225 < 3151

b,

Vì n là số tự nhiên nên n chỉ có thể là số chẵn hoặc  n là số lẻ

- Nếu n là chẵn \(\Rightarrow\)3n + 2 là chẵn 

\(\Rightarrow3n+2⋮2\)

\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với  n chẵn (1)

- Nếu n lẻ \(\Rightarrow\)n+1 là chẵn 

\(\Rightarrow\) \(n+1⋮2\)

\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với n lẻ (2)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với mọi số tự nhiên n

Vậy \(A=\left(n+1\right).\left(3n+2\right)⋮2\)

22 tháng 4 2017

a)

Ta có : 3151 > 3150 = ( 32 ) 75 = 975

Mà 2225 = ( 23 ) 75 = 875

Vì 975 > 875 nên 2225 < 3150 < 3151

=> 2225 < 3151

b) ta xét 2 trường hợp : n = 2k hoặc n = 2k + 1 ( k \(\in\)Z )

TH1 : n = 2k + 1

A = ( n + 1 ) ( 3n + 2 ) 

=> A = ( 2k + 1 +1 ) . [ 3 . ( 2k + 1 ) + 2 ]

=> A = ( 2k + 2 ) . ( 6k + 4 )

=> A = 2 ( k + 1 ) . 2 ( 3k + 2 ) \(⋮\)2

TH2 : n = 2k 

A = ( n + 1 ) ( 3n + 2 )

=> A = ( 2k + 1 ) ( 3 . 2k + 2 )

=> A = ( 2k + 1 ) . ( 6k + 2 )

=> A = ( 2k + 1 ) . 2 . ( 3k + 1 ) \(⋮\)2

=> A \(⋮\)2

29 tháng 11 2015

a)n+5 chia hết cho n-1

=>n-1+6 chia hết cho n-1 

=> 6 chia hết cho n-1 hay n-1EƯ(6)={1;2;3;6}

=>nE{2;3;4;7}

b)3n+1 chia hết cho n+1

3n+3-2 chia hết cho n+1

3(n+1)-2 chia hết cho n+1

=>2 chia hết cho n+1 hay n+1EƯ(2)={1;2}

nE{0;1}