K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)

\(\Rightarrow A\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)

b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)

\(\Rightarrow B\le3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)

3 tháng 10 2018

với mọi x thì (2x+1/4)4>=0 (lớn  hơn hoặc bằng )

A=(2x+1/4)4-1>=-1

để A đạt GTNN thì (2x+1/4)4=0

2x+1/4=0 =>x=-1/8

27 tháng 4 2018

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

13 tháng 2 2016

Ta có /x+1/ >/ 0 với mọi x

=> A>/ 5 với mọi x

=>Amax=5

Dấu "=" xảy ra<=>x+1=0<=>x=-1

B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)

 ta có x^2+3 >/ 3 với mọi x

=>12/x^2+3 </ 12/3=4 với mọi x

=>B </ 1+4=5 với mọi x

Dấu "=" xảy ra<=>x=0

Vậy...

22 tháng 11 2017

Đặt: 

\(\frac{3-4x}{x^2+1}=a\Rightarrow ax^2+4x+a-3=0\) Phương trình bậc hai ẩn x có nghiệm

\(\Delta'=a^2-3a-4\le0\Leftrightarrow-1\le a\le4\)

\(GTNN:-1\)

\(GTLN:4\)

21 tháng 7 2017

A)\(A=2.x^2-4.x+10\)

\(2A=4.x^2-8x+20\)

\(2A=4.x^2-2.2x.2+2^2+16\)

\(2A=\left(2x-2\right)^2+16\ge16\forall x\)

\(A=8\)

DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)

VẬY GTNN CỦA A LÀ 8 VỚI x=1

C)\(\left(x-1\right)\left(x+2\right)+3x+5\)

\(C=x^2+2x-x-2+3x+5\)

\(C=x^2+4x+3\)

\(4C=4x^2+16x+12\)

\(4C=4x^2+2.2x.4+4^2-4\)

\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)

\(C=-1\)

DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)

VẬY GTNN CỦA C  LÀ -1 VỚI X=-2

XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI

31 tháng 10 2018

\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)

\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)

\(=24-2\sqrt{6}\)

NV
4 tháng 10 2020

\(A=4\left(x-1\right)+\frac{25}{x-1}+4\ge2\sqrt{\frac{100\left(x-1\right)}{x-1}}+4=24\)

\(A_{min}=24\) khi \(x=\frac{7}{2}\)

7 tháng 6 2020

Akai Haruma chị cứu em bài này với : Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

AH
Akai Haruma
Giáo viên
7 tháng 6 2020

Lời giải:
\(N=\frac{4(x-2)}{(x^2-4x+4)+4}=\frac{4(x-2)}{(x-2)^2+4}=\frac{4t}{t^2+4}\)

Có:

\(N+2=\frac{t^2+4t+4}{t^2+4}=\frac{(t+2)^2}{t^2+4}\geq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\geq -2\) hay $N_{\min}=-2$ khi $t=-2\Leftrightarrow x=0$

\(N-2=-\frac{t^2-4t+4}{t^2+4}=\frac{-(t-2)^2}{t^2+4}\leq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\leq 2\) hay $N_{\max}=2$ khi $t=2\Leftrightarrow x=4$

Vậy......

28 tháng 8 2016

\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)

\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự với các biểu thức còn lại, kết hợp với 

\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

là được đáp án.