cho tứ giác ABCD góc A + góc C bằng 180 độ biết AB<AC và AC là tia phân giác của góc DAB .C/M: tam giác BDC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chứng minh ngược với bài này là được:
đề: Cho tứ giác ABCD Có Â+C^=180 độ và AC là phân giác góc BÂD Chứng minh CB=CD?
Giải:
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét tam giác ABC và AEC có
AB = AE
góc BAC = góc EAC (AC là phân giác góc BAD )
AC là cạnh chung
=> tam giác ABC = tam giác AEC ( c - g - c )
=> BC = CE và góc ABC = góc AEC
tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ
mà góc A + góc C = 180 độ => góc B + góc D = 180 độ
từ góc ABC góc AEC và góc DEC + góc AEC = 180 độ => góc DEC = góc D
Do vậy tam giác CDE cân đỉnh C => DC = CE
từ BC = CE , DC = CE => BC = DC ( đpcm)
Nhận xét: ∠A+∠C=180o. Mà góc kề bù với ∠C cũng có tổng =180o
Trên tia đối CD lấy I sao cho CI=BC.
Dễ dàng C/m ΔABD=ΔBCI(c.g.c)
⇒BD=BIvà∠BID=∠ADB
⇒∠BDC=∠BID