K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

\(\frac{x^2-2xy+y^2}{x+y}=\frac{P}{x^2-y^2}\)

\(\frac{\left(x-y\right)^2}{x+y}=\frac{P}{\left(x-y\right)\left(x+y\right)}\)

\(P=\frac{\left(x-y\right)^3\left(x+y\right)}{x+y}=\left(x-y\right)^3\)

16 tháng 7 2015

\(\frac{x}{x+3}=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{x^2-3x}{x^2-9}\)

VẬy ta điền x^2 - 3x vào chỗ ....

24 tháng 11 2020

Đặt chỗ trống cần tìm là a 

Ta có : \(\frac{a}{x^2-9}=\frac{x}{x+3}\Leftrightarrow\frac{a}{\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

Khử mẫu : \(a=x\left(x-3\right)=x^2-3x\)

Vậy chỗ trống cần tìm là x^2 - 3x

10 tháng 7 2016

1) \(25-x^2-y^2+2xy=5^2-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2\)\(=\left(5-x+y\right)\left(5+x-y\right)\)

2)  \(3x-3y-x^2+2xy-y^2\)\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)\(=3\left(x-y\right)-\left(x-y\right)^2\)\(=\left(x-y\right)\left(3-x+y\right)\)

10 tháng 7 2016

1) \(25-x^2-y^2+2xy\)

\(=5^2-\left(x^2+y^2-2xy\right)\)

\(=5^2-\left(x-y\right)^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

2) \(3x-3y-x^2+2xy-y^2\)

\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

\(=\left(3-x+y\right)\left(x-y\right)\)

12 tháng 11 2016

Dùng hằng đẳng thức đáng nhớ thôi b

Ta có y2 - x2 = (y - x)(y + x)

Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được

12 tháng 11 2016

Mình ko hiểu bạn muốn hỏi gì? Câu hỏi mập mờ quá!

5 tháng 8 2017

Theo AM-GM , có :

\(x+y\ge2\sqrt{xy}\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

Nhân vế theo vế :

\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

5 tháng 8 2017

Kurosaki Akatsu​   mình đang cần chứng minh phần sau nhé:))

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

4 tháng 11 2018

\(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\)

\(=\frac{2xy}{\left(x-y\right)\left(x+y\right)}+\frac{x-y}{2\left(x+y\right)}\)

\(=\frac{4xy}{2\left(x-y\right)\left(x+y\right)}+\frac{\left(x-y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)}\)

\(=\frac{4xy+x^2-xy-xy-y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{2xy+x^2-y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{x-y}{2\left(x+y\right)}=\frac{x-y}{2x+2y}\)