Giải hpt: \(\hept{\begin{cases}x^2-y\sqrt{xy}=36\\y^2-x\sqrt{xy}=72\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà
Xét hệ \(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=1\\\sqrt{x^2-1}+\sqrt{y^2-1}=\sqrt{xy+2}\end{cases}}\)
\(ĐKXĐ:\hept{\begin{cases}x^2\ge1\\y^2\ge1\\xy\ge-2\end{cases}}\)
Hệ đã cho tương đương với \(\hept{\begin{cases}x^2+y^2=x^2y^2\left(1\right)\\x^2+y^2-2+2\sqrt{\left(x^2-1\right)\left(y^2-1\right)}=xy+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow x^2y^2-2+2\sqrt{x^2y^2-x^2-y^2+1}=xy+2\)\(\Leftrightarrow x^2y^2=xy+2\)(suy ra từ (1))
\(\Leftrightarrow\left(xy-2\right)\left(xy+1\right)=0\Leftrightarrow\orbr{\begin{cases}xy=2\\xy=-1\end{cases}}\)
* \(xy=2\Rightarrow4=x^2y^2=x^2+y^2+2xy-4\Leftrightarrow\left(x+y\right)^2=8\)\(\Rightarrow\orbr{\begin{cases}x+y=2\sqrt{2}\\x+y=-2\sqrt{2}\end{cases}}\)
+) Với \(x+y=2\sqrt{2}\)ta được hệ \(\hept{\begin{cases}xy=2\\x+y=2\sqrt{2}\end{cases}}\Leftrightarrow x=y=\sqrt{2}\)
+) Với \(x+y=-2\sqrt{2}\)ta được hệ \(\hept{\begin{cases}xy=2\\x+y=-2\sqrt{2}\end{cases}}\Leftrightarrow x=y=-\sqrt{2}\)
* \(xy=-1\Rightarrow1=x^2y^2=x^2+y^2+2xy+2\Rightarrow\left(x+y\right)^2=-1\left(L\right)\)
Vậy hệ phương trình có 2 nghiệm \(\left(x;y\right)\in\left\{\left(\sqrt{2};\sqrt{2}\right);\left(-\sqrt{2};-\sqrt{2}\right)\right\}\)
em ko bít làm
Từ HPT (=) căn(x) . [căn(x)^3 - căn(y)^3] = 36 (1)
căn(y) . [căn(y)^3 - căn(x)^3] = 72 (2)
từ (1) và (2) =) căn(y) . [căn(y)^3 - căn(x)^3] = 2.căn(x) . [căn(x)^3 - căn(y)^3]
(=) [căn(x)^3 - căn(y)^3] . [2.căn(x) + căn(y)] = 0
tự giải phần còn lại
chúc bn hc tốt