cho hbh ABCD qua C kẻ đg thẳng song song BD cắt AB ở E cắt AD ở F
a) tứ giác BECD là hình gì? vì sao
b) C/m 3 đg thẳng AC, BF, DE đồng quy( cùng đi qua 1 điểm )
Mn giúp mk nha <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) ta có:
AD//BC (ABCD là hình bình hành)
=>góc DAB= góc CBE(2 góc so le trong)
và góc ADB=góc DBC (2 góc so le trong)
mà góc DBC= góc BCE ( BD//CE)
nên góc ADB= góc BCE
Xét tam giác ABD và tam giác BEC
góc DAB= góc CBE(chứng minh trên)
góc ADB= góc BCE(chứng minh trên)
AD=BC(ABCD là hình bình hành)
suy ra: tam giác ABD = tam giác BEC(g-c-g)
suy ra: BD=CE(2 cạnh tương ứng)
mà BD//CE(giả thiết)
nên BECD là hình bình hành
a: Xét tứ giác BECD có
BE//CD
BD//CE
Do đó: BECD là hình bình hành
Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng song song với BD cắt AB ở E, cắt AD ở F
a.Tứ giác BECD là hình gì Vì sao
b.Chứng minh 3 đừng thẳng AC, BF, DE đồng quy
Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng song song với BD cắt AB ở E, cắt AD ở F
a.Tứ giác BECD là hình gì Vì sao
b.Chứng minh 3 đừng thẳng AC, BF, DE đồng quy
a: Xét tứ giác BECD có
BE//CD
BD//CE
Do đó: BECD là hình bình hành
b: BECD là hình bình hành
nên BE=CD=BA
=>B là trung điểm của AE
Xét ΔAFE có
B là trung điểm của AE
BD//FE
Do đó: D là trung điểm của FA
=>BD=FC và BD//FC
=>BDFC là hình bình hành
SUy ra: C là trung điểm của FE
Xét ΔAFE có
AC,FB,ED là các đường trung tuyến
nên AC,FB,ED đồng quy
Bài 2:
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: ta có: DEBF là hình bình hành
nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có:ABCD là hình bình hành
nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra BD,EF,AC đồng quy
a) Tứ giác BECD có: BD // CE (gt) và BE // CD (do AB // CD)
\(\Rightarrow\)BECD là hình bình hành
b) ABCD là hbh \(\Rightarrow\)AB = CD ; AD = BC (1)
BECD là hbh \(\Rightarrow\)BE = CD ; CE = BD (2)
Tứ giác BCFD có CF // BD (gt) ; DF // BC ( do AD // BC)
\(\Rightarrow\)BCFD là hbh \(\Rightarrow\)FD = BC ; FC = DB (3)
Từ (1) ; (2) và (3) \(\Rightarrow\)DA = DF; CF = CE; BE = BA
hay AC; FB; ED là 3 đường trung tuyến của \(\Delta\)AEF
\(\Rightarrow\)AC; BF; DE đồng quy