Cho hàm số y=(2m-3)x
a) Tìm m để hàm số nhận giá trị bằng -3 tại x=2
b)Với giá trị nào của m thì đồ thị hàm số đi qua điểm A(-1;5)?
c)Tìm m để điểm B(-5;0) thuộc đồ thị hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đồ thị hàm số qua A khi:
\(-1.\left(2m-3\right)=5\)
\(\Leftrightarrow3-2m=5\)
\(\Leftrightarrow m=-1\)
b. B thuộc đồ thị hàm số khi:
\(-5\left(2m-3\right)=0\)
\(\Leftrightarrow2m-3=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
a) Thay x=-1 và y=5 vào (d), ta được:
\(\left(2m-3\right)\cdot\left(-1\right)=5\)
\(\Leftrightarrow2m-3=-5\)
\(\Leftrightarrow2m=-2\)
hay m=-1
b) Thay x=-5 và y=0 vào (d), ta được:
\(\left(2m-3\right)\cdot\left(-5\right)=0\)
\(\Leftrightarrow2m-3=0\)
hay \(m=\dfrac{3}{2}\)
a) H/s là bậc nhất ⇔ m+5≠0 ⇔m ≠-5
b) H/s đồng biến ⇔ m+5> 0 ⇔ m> -5
c) H/s đi qua A( 2,3) ⇔ 2=(m+5).2 +2m -10 ⇔ 2m+ 2m +10 -10 =2
⇔ m= \(\dfrac{1}{2}\)
d) H/s cắt trục tung tại điểm có tung độ bằng 9
⇔ x=0 thì y=9 ⇔ (m+5).0 +2m -10 =9
⇔m= \(\dfrac{19}{2}\)
e) H/s đi qua điểm 10 trên trục hoành ⇔ y=0, x=10
⇔ 0= (m+5).10 +2m -10 ⇔m= \(\dfrac{-40}{12}\)
f) h/s song song với y=2x-1
⇔ \(\left\{{}\begin{matrix}m+5=2\\2m-10\ne-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{9}{2}\end{matrix}\right.\)
⇔m=-3
B1:
Đặt (d): y=(m+5)x+2m-10
c) Để đồ thị hàm số đi qua điểm A(2;3) thì
Thay x=2 và y=3 vào (d), ta được:
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow2m+10+2m-10=3\)
\(\Leftrightarrow4m=3\)
hay \(m=\dfrac{3}{4}\)
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3
<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1
b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0
Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1
Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0
c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)
Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\)
<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6
Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm