K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

29 tháng 3 2020

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 3 2020

Biến đổi tương đương ta có : 

\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)

\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm bất đẳng thức Cauchy 3 số ta có : 

a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)

Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1

31 tháng 3 2020

Mình áp dụng BĐT AM-GM  đến dòng 

\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)

Áp dụng BĐT AM-GM cho 3 số dương ta được

\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)

Cộng từng vế  BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra <=> a=b=c=1

29 tháng 3 2020

Biến đối tương đương ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm BĐT Cauchy 3 số ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)

Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1

22 tháng 1 2018

đề đúng hay sai vậy

22 tháng 1 2018

Đề đúng bạn ơi

7 tháng 9 2019

Mình dùng ''AM-GM ngược dấu'' như sau

Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự với các phân thức khác rồi cộng vế theo vế ta được:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)

Mặt khác áp dụng bất đẳng thức AM-GM  \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)

Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)

bạn ơi đoạn cuối áp dụng BĐT AM-GN  mk chưa hiểu lắm