Rút gọn phân thức sau
(X^2+2xy+y^2)/(2x+xy-y^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
b) \(A+B=x^2+y^2+2x+3+2x^2+y^2+2x+1=3x^2+2y^2+4x+4\)
\(A-B=x^2+y^2+2x+3-2x^2-y^2-2x-1=-x^2+2\)
a) Ta có: \(A=x^2+y^2-2xy+2x+2xy+3\)
\(=x^2+y^2+2x-\left(2xy-2xy\right)+3\)
\(=x^2+y^2+2x+3\)
Ta có: \(B=2x^2+y^2-xy+2x+xy+1\)
\(=2x^2+y^2+2x+\left(xy-xy\right)+1\)
\(=2x^2+y^2+2x+1\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
a) Ta có: \(3x\left(2x-4\right)-\left(6x-1\right)\left(x+2\right)=25\)
\(\Rightarrow6x^2-12x-\left(6x^2+12x-x-2\right)=25\)
\(\Rightarrow6x^2-12x-6x^2-12x+x+2=25\)
\(\Rightarrow-23x+2=25\)
\(\Rightarrow-23x=25-2-23\)
\(\Rightarrow x=23:\left(-23\right)=-1\)
Vậy x = -1
b) \(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x^2+2xy+y^2\right)\)
\(=\left(x-y\right)2x^2\)
Bài 1:
\(\frac{10}{3}\)