K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

A=1x3+2x4+3x5+...+99x100

A=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)

đặt S=1x3+3x5+...+99x101

=>6S=6x(1x3+3x5+...+99x101)

=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)

=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101

=1x3x1+99x101x103

=>S=(3+99x101x103):6=171650

=>C=171650+(2x4+4x6+...+98x100)

đặt A=2x4+4x6+...+98x100

=>6A=6x(2x4+4x6+...+98x100)

=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)

=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100

=98x100x102

=>A=98x100x102:6=166600

=>A=166600+171650

=>A=338250

2 tháng 3 2018

Đáp án =2525 vì câu của cậu có người hỏi rồi

17 tháng 4 2020


= 338250

Học tốt

27 tháng 4 2020

khó dữ vậy ba ?????

24 tháng 12 2016

Hỏi thật hả. 

27 tháng 2 2018

chịu vì em hok lớp 6

27 tháng 6 2016

kiến thức lớp 8 chắc mới làm dc

\(A=\left(1+\frac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\frac{1}{\left(3-1\right)\left(3+1\right)}\right)+....+\frac{1}{\left(100-1\right)\left(100+1\right)}\)

\(A=\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{3^2}\right)......\left(1+\frac{1}{100^2}\right)\)

ok tự giải típ nhé

27 tháng 6 2016

A=(1+1/1.3)+........+(1+1/99.100)

=>A=[ (1.3+1)/(1.3 ) ] .[ (2.4+1)/(2.4) ] .... [ (99.101+1)/(99.101) ] 

=>A=( 4/1.3 ).( 9/2.4)......( 10000/99.101)

=>A=( 22/1.3).( 32/2..4).......( 1002/99.101)

=>A=\(\frac{2^2.3^2........99^2.100^2}{1.3.2.4.....99.101}\)

=>A=\(\frac{2.3....100.2.3.....100}{1.2.....99.3.4.....101}\)

=>A=\(\frac{100.2}{101}\)

=>A=\(\frac{200}{101}\)

Vậy A=\(\frac{200}{101}\)

11 tháng 11 2019

bấm máy tính là ra

11 tháng 11 2019

Tính nhanh nhé