Chứng minh rằng các cặp số sau nguyện tố cùng với mọi số tự nhiên n:
a)2n + 1 và 6n + 5
b)3n + 2 và 5n + 3
Ai nhanh mk tick nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi ƯCLN(3n+2; 5n+3) là d. Ta có:
3n+2 chia hết cho d=> 15n+10 chia hết cho d
5n+3 chia hết cho d => 15n+9 chia hết cho d
=> 15n+10 - (15n+9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(3n+2; 5n+3) = 1
=> 3n+2 và 5n+3 nguyên tố cùng nhau (Đpcm)
a, Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
6n+5 chia hết cho d
=> 6n+5 - (6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 là số lẻ không chia hết cho 2
=> d = 1
=> ƯCLN(2n+1; 6n+5) = 1
=> 2n+1 và 6n+5 nguyên tố cùng nhau (Đpcm)
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
gọi UCLN﴾2n + 1 ; 6n + 5﴿ là d
ta có :
2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d
6n + 5 chia hết cho d
=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d
=>2 chia hết cho d
=> d thuộc Ư﴾2﴿ = {1;2}
Mà 2n + 1 ; 6n + 5 lẻ nên n = 1
=>UCLN(..)=1
=>ntcn
a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
=> 2 chia hết cho d.
Mà 2n + 1 là số lẻ không chia hết cho d => d = 1
=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.
b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d
=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d
=> 15n + 10 - (15n + 9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)