Tìm các số hữu tỉ x,y,z biết:
5xy=3
5yz=4
4xz=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây nhé: Câu hỏi của Phạm Khánh Linh .
Chúc bạn học tốt!
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
mình sẽ đơn giản cách giải ấy cho cậu
cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5
(x + y + z)2 = 9
chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2
vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3
với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)
tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)
Và trường hợp còn lại (x + y + z) = -3 cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được
x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình
Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9
9=32 hoặc 9=(-3)2
Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)
Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)
Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)
Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
Cộng theo vế 3 dữ kiện của bài toán ta được:
\(\left(x+y+z\right)^2=36\)
<=> \(x+y+z=\pm6\)
TH1: x+y+z=6
=> x= -12:6=-2
y = 18:6=3
z= 30:6=5
TH2 : x+y+z =-6
=> x= -12:-6=2
y= 18:-6=-3
z= 30:-6=-5
Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)
Ta có :
\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=-5\)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+-5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Rightarrow\left(x+y+z\right)^2=3^2=\left(-3\right)^2\)
Với \(\left(x+y+z\right)=3\); ta có:
\(x=-5:\left(x+y+z\right)=-5:3=-\frac{5}{3}\)
\(y=9:\left(x+y+z\right)=9:3=3\)
\(z=5:\left(x+y+z\right)=5:3=\frac{5}{3}\)
Với \(\left(x+y+z\right)=-3\)
\(x=-5:\left(x+y+z\right)=-5:\left(-3\right)=\frac{5}{3}\)
\(y=9:\left(x+y+z\right)=9:\left(-3\right)=-3\)
\(z=5:\left(x+y+z\right)=5:\left(-3\right)=-\frac{5}{3}\)
Để tôi giúp bác giải nó nhé
Vì 5xy=3;5yz=4;4xz=3
=> xy=3/5;yz=4/5;xz=3/4
=> xy.yz.xz=(3/5)(4/5)(3/4)
=> xy.yx.xz=3.4.3/5.5.4
=> xy.yz.xz= 3.3/5.5
=> xy.yz.xz=9/25
=> x^2.y^2.z^2=9/25
=>(xyz)^2=9/25
Vì 9/25=(3/5)^2=(-3/5)^2
=>xyz=3/5;-3/5
nên ta có 2 trường hợp:
TH1:xyz=3/5
=>x=3/4;y=4/5;z=1
TH2:xyz=-3/5
=>x=-3/4;y=-4/5;z=-1
Bác tự vậy nhé
k cho tui nhi