K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Để tôi giúp bác giải nó nhé 

Vì 5xy=3;5yz=4;4xz=3

=> xy=3/5;yz=4/5;xz=3/4

=> xy.yz.xz=(3/5)(4/5)(3/4)

=> xy.yx.xz=3.4.3/5.5.4

=> xy.yz.xz= 3.3/5.5

=> xy.yz.xz=9/25

=> x^2.y^2.z^2=9/25

=>(xyz)^2=9/25

Vì 9/25=(3/5)^2=(-3/5)^2

=>xyz=3/5;-3/5

nên ta có 2 trường hợp:

TH1:xyz=3/5

=>x=3/4;y=4/5;z=1

TH2:xyz=-3/5

=>x=-3/4;y=-4/5;z=-1

16 tháng 12 2017

Bác tự vậy nhé

k cho tui nhi

7 tháng 10 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Phạm Khánh Linh .

Chúc bạn học tốt!

7 tháng 10 2019

Tham khảo:

undefined

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

3 tháng 9 2016

mình sẽ đơn giản cách giải ấy cho cậu

cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5

(x + y + z)2 = 9

chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2

vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3

với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)

tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)

Và trường hợp còn lại (x + y + z) = -3  cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được

x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)

vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình

3 tháng 9 2016

Sory mk nam nay moi len lop 6 

16 tháng 9 2017

Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9

9=32 hoặc 9=(-3)2

Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)

Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)

Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)

Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)

16 tháng 9 2017

tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5

21 tháng 7 2016

Cộng theo vế 3 dữ kiện của bài toán ta được:

\(\left(x+y+z\right)^2=36\)

<=> \(x+y+z=\pm6\)

TH1: x+y+z=6

=> x= -12:6=-2

      y = 18:6=3

    z=  30:6=5

TH2 : x+y+z =-6

 => x= -12:-6=2

    y=  18:-6=-3

  z= 30:-6=-5

Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)

14 tháng 7 2016

Ta có :

\(x\left(x+y+z\right)=-5\)

\(y\left(x+y+z\right)=9\)

\(z\left(x+y+z\right)=-5\)

\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+-5\)

\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Rightarrow\left(x+y+z\right)^2=3^2=\left(-3\right)^2\)

Với \(\left(x+y+z\right)=3\); ta có:

\(x=-5:\left(x+y+z\right)=-5:3=-\frac{5}{3}\)

\(y=9:\left(x+y+z\right)=9:3=3\)

\(z=5:\left(x+y+z\right)=5:3=\frac{5}{3}\)

Với \(\left(x+y+z\right)=-3\)

\(x=-5:\left(x+y+z\right)=-5:\left(-3\right)=\frac{5}{3}\)

\(y=9:\left(x+y+z\right)=9:\left(-3\right)=-3\)

\(z=5:\left(x+y+z\right)=5:\left(-3\right)=-\frac{5}{3}\)

14 tháng 7 2016

x(x+y+z) + y(x+y+z) + z(x+y+z) = (-5) + 9 + 5   
suy ra (x+y+z ) ( x+y+z ) = 9
          (x+y+z)^2 = 9 
x+y+z = -3 hoặc 3 
đến đây thay vào đề bài là làm được