Cho hình chữ nhật ABCD có AB<BC,kẻ BH vuông góc AC (H thuộc AC).Gọi M,K,N lần lượt là trung điểm của AH,CD và BH
a) Chứng minh MNCK là hình bình hành
b)Chứng minh BM vuông góc MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
diện tích hình chữ nhật là : 12*24=288(cm2)
chiều cao bằng chiều rộng
chiều dài bằng đáy hình tam giác
Diện tích hình tam giác là: 288:2=144(cm2)
Đáp số : 144 cm2
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ