rút gọn :
a, 1 + 2 + 22 + ... + 2100
b, 1 + 3 + 32 + ... + 3100
c, 1 + 4 + 42 + ... + 4100
d, 1 + 10 + 102 + ... + 10100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
a: Ta có: \(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{99}\right)⋮3\)
b: Ta có: \(B=4+4^2+4^3+...+4^{2022}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{2021}\right)⋮5\)
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
......
\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)
hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )
Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)
.........................
\(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)
=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
=> D < 1 - \(\dfrac{1}{10}\)
=>D < \(\dfrac{9}{10}\)
=> D < \(\dfrac{10}{10}\)
Vậy D < 1
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Xin lỗi mọi người mình tính đặt câu hỏi nhưng ấn nhầm phần trả lời ạ!
1,
a,-3/5
b,-1/2
c,19/39
d,1/4
e,-39/40
f,-59/56
2,
a,=
b,<
c,>
d,<
k cho mình nha
= (2√2 - 3√2 + 10)√2 - √5
= 2.(√2)2 - 3.(√2)2 + √10.√2 - √5
= 4 - 6 + √20 - √5 = -2 + 2√5 - √5
= -2 + √5
= 0,2.10.√3 + 2|√3 - √5|
s
= 2√3 + 2(√5 - √3)
= 2√3 + 2√5 - 2√3 = 2√5
12/18 + 12/42 = 2/3 + 2/7 = 14/21 + 6/21 = 20/21
1/2 + 2/4 + 3/6 + 4/8 + 5/10 + 6/12
= 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
= 1/2 x 6
=6/2
=3
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)