Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )Bài 1:( 6đ)a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là số nguyênBài 2:( 3đ...
Đọc tiếp
Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )
Bài 1:( 6đ)
a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)
c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là số nguyên
Bài 2:( 3đ )
a) Chứng minh rằng: \(2a-5b+6c⋮17\)nếu \(a-11b+3c⋮17\)( a,b,c thuộc Z)
b) Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). Chứng minh rằng : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Bài 3: (3đ)
a) Độ dài ba cạnh của tam giác tỉ lệ với 2;3;4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với ba số nào ?
b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3;4;5 các mẫu của chúng tỉ lệ với 5;1;2. Tìm ba phân số đó.
Bài 4:(6đ)
Cho tam giác ABC vuông tại A ( AB < AC ). M là trung điểm của BC, trên tia đối của tia MA lấy N sao cho MA=MN. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD=HA. Đường thẳng vuông góc với BC tại D cắt AC ở E.
1. Chứng minh tam giác ABC và tam giác CNA bằng nhau.
2.Chứng minh AB=AE
3.Gọi K là trung điểm BE. Tính số đo góc CHK.
Bài 5(2đ)
a) Cho 2n+1 là số nguyên tố ( n > 2 ). Chứng minh 2n-1 là hợp số.
b) Cho f(x)=ax2+bx+c Với a,b,c là các số hữu tỉ.
Chứng tỏ rằng: \(f\left(-2\right).f\left(-3\right)\le0\). Biết rằng 13a+b+2c=0.
Tìm thiên tài nek. Hoặc có thể tham khảo cho kì thi thành phố.
mk ko bt 123
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu