K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

\(3^{500}=\left(3^5\right)^{100}=243^{100}\)

vì \(125< 243\) nên \(5^{300}< 3^{500}\)

8 tháng 8 2016

không

19 tháng 12 2017

em không thể trả lời được

cho em nhé 

kết bạn với em nhé

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

2 tháng 11 2017

a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)

\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)

Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)

\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)

\(5^{36}=\left(5^6\right)^6=15625^6\)

Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)

2 tháng 11 2017

a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)

\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)

Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)

Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)

\(5^{36}=\left(5^4\right)^9=625^9\)

Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)

 Vậy \(2^{90}>5^{36}\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

2 tháng 5 2017

Bài 3:

\(\left(\dfrac{1}{32}\right)^7=\dfrac{1^7}{32^7}=\dfrac{1}{32^7}=\dfrac{1}{\left(2^5\right)^7}=\dfrac{1}{2^{35}}\\ \left(\dfrac{1}{16}\right)^9=\dfrac{1^9}{16^9}=\dfrac{1}{16^9}=\dfrac{1}{\left(2^4\right)^9}=\dfrac{1}{2^{36}}\)

\(2^{35}< 2^{36}\) nên \(\dfrac{1}{2^{35}}>\dfrac{1}{2^{36}}\) hay \(\left(\dfrac{1}{32}\right)^7>\left(\dfrac{1}{16}\right)^9\)

26 tháng 6 2017

a)\(A=\frac{2}{3}+\frac{3}{4}.-\frac{4}{9}\)

   \(A=\frac{2}{3}-\frac{1}{3}\)

     \(A=\frac{1}{3}\)

b)\(B=2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)

    \(B=\frac{325}{132}.\left(-2,2\right)\)

      \(B=-\frac{65}{12}\)

c)\(C=\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)

    \(C=\frac{11}{20}.-\frac{2}{5}\)

     \(C=-\frac{11}{50}\)

              Ta có:\(A=\frac{1}{3}=\frac{100}{300}\)

                        \(B=-\frac{65}{12}=-\frac{1625}{300}\)

                         \(C=-\frac{11}{50}=-\frac{660}{300}\)

                                  Vì \(-\frac{1625}{300}< -\frac{660}{300}< \frac{100}{3}\)

      Vậy \(B< C< A\)

                          

26 tháng 6 2017

A= 2/3-1/3=1/3 = 0,333..

B=25/11.13/12.(-2,2)= -65/12= -5,41666...

C= 11/20.(-2/5) =-11/50=-0,22

=> B < C < A

2 tháng 11 2016

Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100

(-1/3)^500=(-1/3^5)^100=(-1/243)^100

vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500

b, ta có:-(-2)^300=(2^3)^100=8^100

(-3)^200=(-3^2)^100=9^100

vì 8^100<9^100→-(-2)^300<(-3)^200

 

Thay \(3,7=3\frac{7}{10}\)vào biểu thức:

A = \(\left[3+\frac{7}{10}\right]+\left[3+\frac{9}{10}\right]+\left[3+\frac{11}{10}\right]+\left[3+\frac{13}{10}\right]+\left[3+\frac{15}{10}\right]\)

A = 3 + 3 + 4 +4 + 4 = 18

B = \(\left[5x\right]=\left[5.3,7\right]=\left[18,5\right]=18\)

Vậy A = B

1) c)

\(\left[\frac{1000}{3}\right]+\left[\frac{1000}{3^2}\right]+\left[\frac{1000}{3^3}\right]+\left[\frac{1000}{3^4}\right]=33+11+3+1=48\)