số có đạng n^2+n+1 (n là số nguyên dương) co phải là số chình phương hay k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vi n2 + 2006 la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006 hay (n+a)x(n-a) = 2006
Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2
Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ
TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)
TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn
suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4
mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài
#include <bits/stdc++.h>
using namespace std;
long long m,n,k;
int main()
{
cin>>m>>n>>k;
if ((m*n*k>=10) and ((m*n*k)%10==0)) cout<<"Phai";
else cout<<"Khong phai";
return 0;
}
const
fi='sochinhphuong.inp';
fo='sochinhphuong.out';
var f,g:text;n:longint;
function scp(n:longint):boolean;
begin
if (sqr(trunc(sqrt(n)))=n) then exit (true);
exit (false);
end;
begin
assign(f,fi);reset(f);
assign(g,fo);rewrite(g);
readln(f,n);
if scp(n) then writeln(g,'yes') else
writeln(g,'no');
close(f);close(g);
end.
#include <bits/stdc++.h>
using namespace std;
long long n,x;
int main()
{
cin>>n;
x=sqrt(n);
if (x*x==n) cout<<n<<" la so chinh phuong";
else cout<<n<<" khong la so chinh phuong";
return 0;
}
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........