chứng minh rằng 12n+4 va 16n+5 nguyên tố cùng nhau ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chứng minh hai số là nguyên tố cùng nhau thì ta chứng minh ước chung lớn nhất của chúng bằng 1.
Thật vậy, Giả sử d là ước chung của 3n + 2 và 12n + 5 .
=> d là ước của 3n + 2 => d là ước của (3n+2).4 = 12n + 8
=> d là ước của (12n + 8) - (12n + 5) = 3 => d là ước của 3n
=> d là ước của (3n + 2) - 3n = 2
Vì d vừa là ước của 3 và 2 nên d = 1.
Gọi ƯCLN của 16n+5 và 24n+7 là d ( d thuộc N sao )
=> 16n+5 và 24+7 đều chia hết cho d
=> 3.(16n+5) và 2.(24n+7) đều chia hết cho d
=> 48n+15 và 48n+14 đều chia hết cho d
Gọi ƯCLN(16n+5;24n+7) là d
16n+5 chia hết cho d
=> 3(16n+5) chia hết cho d
=> 48n+15 chia hết cho d
24n+7 chia hết cho d
=> 2(24n+7) chia hết cho d
=> 48n+14 chia hết cho d
<=> (48n+15)-(48n+14) chia hết cho d
1 chia hết cho d
=> d = 1
<=> ƯCLN(16n+5;24n+7) =1
Gọi d là ƯCLN của (12n+1,30n+2).
Hay:12n+1-30n+2
Hay 5(12n+1)-2(30n+2)
Hay 60n+5-60n+4
Hay 1 chia hết cho d.
Vậy 12n+1 và 30n+2 là 2 số nguyen tố cùng nhau.
Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN (12n + 1; 30n + 2) Nên ta có :
12n + 1 ⋮ d và 30n + 2 ⋮ d
<=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d
<=> 60n + 5 ⋮ d và 60n + 4 ⋮ d
=> (60n + 5) - (60n + 4) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (12n + 1; 30n + 2) = 1 nên 12n + 1; 30n + 2 là nguyên tố cùng nhau
chào tham khảo nhé :
Gọi d là ước chung lớn nhất của 12n+4 và 16n+5 ( d \(\in\)N*)
Khi đó : \(\hept{\begin{cases}12n+4⋮d\\16n+5⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}4.\left(12n+4\right)⋮d\\3.\left(16n+5\right)⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}48n+16⋮d\\48n+15⋮d\end{cases}}\)
<=> \(\left(48n+16\right)-\left(48n+15\right)⋮d\)
<=> \(1⋮d\)
Mà d \(\in\)N* => d = 1
=> 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau
Vậy 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau