Cho số tự nhiên ab bằng ba lần tích các chữ số của nó.
1, Chứng minh rằng b chia hết cho a
2, Tìm các số ab nói trên.
Các bạn giải đầy đủ giúp mình nha, ai nhanh nhất mình tik cho. Mình đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a + b = 3. a. b (*)
Cho số tự nhiên ab bằng ba lần tích các chữ số của nó nên số tự nhiên ab chia hết cho a; mà 10a cũng chia hết cho a nên để 10a + b chia hết cho a thì b cũng phải chia hết cho a => b chia hết cho a
Thay b = ka vào (*) ta được:
10a + ka = 3aka
<=> a . ( 10 + k ) = 3aka
<=> 10 + k = 3ak (* *)
=> 10 + k chia hết cho k
Vì k chia hết cho k nên để 10 + k chia hết cho k thì 10 chia hết cho k
=> k là Ư(10)
k là Ư(10), k ∈ N nên k ∈ { 1, 2, 5 }
Thay k vào (**) ta được hai trường hợp: a = 2 và b = 4 và a = 1 và b = 5
Vậy số ab trên là 24 và 15
a) Theo đề bài : ab = 3ab
\(\Rightarrow\) 10a + b = 3ab
\(\Rightarrow\) 10a + b chia hết cho a
\(\Rightarrow\)bchia hết cho a
a) Theo đề bài : ab = 3ab
\(\Rightarrow\) 10a + b = 3ab
\(\Rightarrow\)10a + b chia hết cho a
\(\Rightarrow\)b chia hết cho a (ĐPCM)
Giải:
Theo đề bài :ab =3ab
=>10a+b=3ab (1)
=>10a+b chia hết cho a
=>b chia hết cho a
TBR: ab=3.a.b
<=>10.a+b= 3.a.b
Mà 3.a.b\(⋮\)a => 10.a+b\(⋮\)a và 10.a\(⋮\)a
=>b\(⋮\)a (đ.p.c.m)