Giá trị của y thoả mãn
x^2-6xy+y^2+10y+34=-(4z-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện của $x,y$ là gì? Bạn cần bổ sung thêm mới tính toán được
\(x^2-6x+y^2+10y+34=-(4z-1)^2 \\\Leftrightarrow (x^2-6x+9)+(y^2+10y+25)+(4z-1)^2=0 \\\Leftrightarrow (x-3)^2+(y+5)^2+(4z-1)^2=0\)
Ta có:
\((x-3)^2\geq 0 \ \forall \ x;(y+5)^2\geq 0 \ \forall \ y;(4z-1)^2\geq 0 \ \forall \ z \\\Rightarrow (x-3)^2+(y+5)^2+(4z-1)^2\geq 0\)
Dấu '=' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y+5=0\\4z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\\z=\dfrac{1}{4}\end{matrix}\right.\)
Vậy giá trị của y thỏa mãn là -5