Tìm x:
\(\dfrac{x-2}{11}+\dfrac{x-2}{12}+\dfrac{x-2}{13}=\dfrac{x-2}{14}+\dfrac{x-2}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-2/11 + x-2/12 +x-2/13 = x-2/14 + x-2/15
=> x-2 /11 + x-2/12 +x-2/13 - x-2/14 - x-2/15 = 0
=> (x-2). ( 1/11 + 1/12 + 1/13 - 1/14-1/15) = 0
=> x-2 = 0 => x=2
1/ 11 + 1/12 +1/13 -1/14 - 1/15 = 0
Vì 1/11; 1/12; 1/13; 1/14; 1/15 > 1 nên 1/11+1/12+1/3-1/14-1/15= 0 (vô lí)
Vậy x=2
Nhớ like
Giải:
Ta có:
\(\dfrac{x-2}{11}+\dfrac{x-2}{12}+\dfrac{x-2}{13}=\dfrac{x-2}{14}+\dfrac{x-2}{15}\)
\(\Leftrightarrow\dfrac{x-2}{11}+\dfrac{x-2}{12}+\dfrac{x-2}{13}-\dfrac{x-2}{14}-\dfrac{x-2}{15}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
Nên \(x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\).
Chúc bạn học tốt!
Có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Leftrightarrow\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}=0\end{matrix}\right.\)
Vì \(\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)\ne0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=0+2=2\)
Vậy \(x=2\).
Học tốt!
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{1}{11}+\dfrac{1}{12}\right)\left(x+2\right)+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{23\left(x+2\right)}{132}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{23}{132}+\dfrac{1}{13}\right)\left(x+2\right)=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\left(x+2\right)\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{29\left(x+2\right)}{210}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}-\dfrac{29\left(x+2\right)}{210}=0\)
\(\Rightarrow\left(\dfrac{431}{6.286}-\dfrac{29}{6.35}\right)\left(x+2\right)=0\)
\(\Rightarrow\dfrac{1}{6}\left(\dfrac{431}{286}-\dfrac{29}{35}\right)\left(x+2\right)=-2\)
\(\dfrac{x+1}{15}+\dfrac{x+2}{14}=\dfrac{x+3}{13}+\dfrac{x+4}{12}\\ \Rightarrow\left(\dfrac{x+1}{15}+1\right)+\left(\dfrac{x+2}{14}+1\right)-\left(\dfrac{x+3}{13}+1\right)-\left(\dfrac{x+4}{12}+1\right)=0\\ \dfrac{x+16}{15}+\dfrac{x+16}{14}-\dfrac{x+16}{13}-\dfrac{x+16}{12}=0\\ \left(x+16\right)\left(\dfrac{1}{15}+\dfrac{1}{14}-\dfrac{1}{13}-\dfrac{1}{12}\right)=0\\ x+16=0\\ x=-16\)
Bài 1:
a) \(\left|3x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))
Bài 2:
a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)
b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)
\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)
\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)
Bài 1:
a) \(\left|3x-5\right|=4\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\) \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\) \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\Leftrightarrow x=-2004\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)
\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)
nên x-17=0
hay x=17
Vậy: x=17
b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)
\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)
nên x+20=0
hay x=-20
Vậy: x=-20
a, \(\left(x-1\right)^5=-243\)
=> \(\left(x-1\right)^5=\left(-3\right)^5\)
=> x-1= -3
=> x= -2
b, \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}=\dfrac{2+x}{14}+\dfrac{x+2}{15}\)
=> \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}-\dfrac{2+x}{14}+\dfrac{x+2}{15}=0\)
=>\(\dfrac{x+2+2+x+x+2-2+x+x+2}{11+12+13-14+15}\)
=> \(\dfrac{x+2}{37}=0\)
=> x+2= 0
=> x=-2
a) Ta có:
(x - 1)5 = - 243
=> (x - 1)5 = (-3)5
=> x - 1 = - 3
=> x = -3 + 1
=> x = -2
Vậy x = -2
b) Ta có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)
=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)
=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)
=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)
=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0
mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0
=> x + 2 = 0
=> x = -2
Vậy x = -2
c) Ta có :
\(\left|3x-2\right|+5x=4x-10\)
=> \(\left|3x-2\right|=4x-5x-10\)
=> \(\left|3x-2\right|=-x-10\)
=> 3x - 2 = -x - 10
hoặc 3x - 2 = -(-x -10)
*) Nếu 3x - 2 = -x - 10
=> 3x + x = -10 + 2
=> 4x = -8
=> x = -2
*) Nếu 3x - 2 = -(-x -10)
=> 3x - 2 = x +10
=> 3x - x = 10 + 2
=> 2x = 12
=> x = 6
Vậy x = -2 hoặc x = 6
bó tay.com
phê quá