1.Tìm x N biết
f) (n2 + 7n +75) chia hết cho ( n+ 4)
Ai nhanh tay nhất và giải đúng mình tick cho nha!
Cố gắng lên!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 3n +4 chia hết cho 3n-3
=> => 3n+4 chia hết cho 3n+4 -7
=> 7 chia hết cho 3n + 4
=> 3n+4 thuộc ước 7 = +- 7, +-1
=> 3n=.............
n=.....
Ta có: 3n+4
=3n-3 +7
Ta thấy:3n-3 chia hết cho n-1=)1 cũng chia hết cho n-1 mà nEN
(=) n-1=0 =) n=1
Vậy n=1
*lưu ý: E là thuộc
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}
\(7n+15⋮n+1\Rightarrow7\left(n+1\right)+8⋮n+1\Rightarrow8⋮n+1\Rightarrow n+1\inƯ\left(8\right)\)
Do \(n\ge0\Rightarrow n+1\ge1\)
Xét những trường hợp thuộc ước của 8 và lớn bằng 1 ko cần xét th âm
Ta có : \(7n+15⋮n+1\)
\(\Leftrightarrow7n+7+8⋮n+1\)
\(\Leftrightarrow7\left(n+1\right)+8⋮n+1\)
Mà : 7(n+1) chia hết cho n+1
=> để 7n + 15 chia hết cho n+1 thì 8 phải chia hết cho n+1
\(\Rightarrow n+1\inƯ_{\left(8\right)}=\left\{1;2;4;8\right\}\)
\(\Rightarrow n=\left\{0;1;3;7\right\}\)
hok tốt .
ta có 3n+10 chia hết cho n-1
=>3n-3+13 chia hết cho n-1
mà 3n-3 chia hết cho n-1
=>13 chia hết cho n-1
ta có bảng sau:
n-1 | 1 | 13 | -1 | -13 | |
n | 2 | 14 | 0 | -12 |
=>n=(2;14;0;-12)
2n+5chia hết cho 2n+1
=>4n+10chia hết cho 4n+2
=>2n+5chia hết cho 2n+1
Ta có: 2n + 5 = (2n - 1) + 6
Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1
=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> 2n \(\in\){2; 3; 4; 7}
Do n \(\in\)N=> n \(\in\){1; 2}
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
1) Ta có: \(n^2+n+17=n.\left(n+1\right)+17\)
- Để \(n^2+n+17⋮n+1\)\(\Rightarrow\)\(n.\left(n+1\right)+17⋮n+1\)mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow\)\(17⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(17\right)\in\left\{\pm1;\pm17\right\}\)
- Ta có bảng giá trị:
\(n+1\) | \(-1\) | \(1\) | \(-17\) | \(17\) |
\(n\) | \(-2\) | \(0\) | \(-18\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-18,-2,0,16\right\}\)
2) Ta có: \(9-n=\left(-n+3\right)+6=-\left(n-3\right)+6\)
- Để \(9-n⋮n-3\)\(\Rightarrow\)\(-\left(n-3\right)+6⋮n-3\)mà \(-\left(n-3\right)⋮n-3\)
\(\Rightarrow\)\(6⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(n-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(n\) | \(2\) | \(4\) | \(1\) | \(5\) | \(0\) | \(6\) | \(-3\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-3,0,1,2,4,5,6,9\right\}\)
1) n2 + n + 17 = n(n+1) +17 chia hết cho n + 1
=>17 phải chia hết cho n + 1
=> n + 1 thuộc ước 17 ={1;-1;17;-17}
=> n thuộc {0;16;-2;-18}
Vậy có 4 giá trị n thỏa mãn đề bài
2)9-n = 6 -(n-3) chia hết cho n - 3
=> n - 3 thuộc ước 6 = {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {4;2;5;1;6;0;9;-3}
Vậy có 6 giá trị n thỏa mãn đề bài